

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Technical Report Documentation Page

1. Report No	2. Government Acc	ession No.	3. Recipient's Catalog No.						
DOT HS 808852.									
4. Title and Subtitle			5. Report Date						
Analysis of Capital Beltway Crashes; Y	ears 1993 - 1996		December, 1998						
			6. Performing Organization Co	ode					
7. Author(s)	8. Performing Organization Re	eport No.							
M.G. Solomon, D.F. Preusser and W. A									
9. Performing Organization Name and Address			10. Work Unit No. (TRAIS)						
Preusser Research Group, Inc.									
7100 Main Street									
			11. Contract or Grant No.						
			DTNH22-97-D-05	5018					
12. Sponsoring Agency Name and Address			13. Type of Report and Period	Covered					
U.S. Deportment of Transportation									
National Highway Traffic Safety Admit	nistration								
400 Seventh Street, S.W.	nounion								
Washington, D.C. 20590									
			14. Sponsoring Agency Code						
15. Supplementary Notes									
Dr. Linda Cosgrove served as the NHT	SA Contracting	Officer's Technical Repre	sentative for the study.						
16. Abstract									
The sixty-four mile interstate highwa copy crash reports for all crash ever (N=9,403) were provided by Marylan miles traveled (from .45 to .43); injury proportion of total crashes (from 8.1 Crash type distribution remained relat all crashes. The most common type of factor in these crashes. <i>Ran off ro</i> Tractor-trailers remained relatively of involved straight trucks increased.	16. Abstract The sixty-four mile interstate highway system encircling Washington, D.C. is known as the Capital Beltway. Hard- copy crash reports for all crash events occurring on the Capital Beltway during the period 1993 through 1996 (N=9,403) were provided by Maryland and Virginia. From 1993 to 1996 total crashes decreased per million vehicle miles traveled (from .45 to .43); injury/fatal crashes decreased (from .19 to .18); alcohol related crashes decreased as a proportion of total crashes (from 8.1 percent to 6.8 percent) and fatal crashes dropped by nearly half (from 17 to 9). Crash type distribution remained relatively consistent over time. Three major crash types accounted for 78 percent of all crashes. The most common type of crash was <i>stop/slowing</i> (36 percent of all crashes). Congestion was typically a factor in these crashes. <i>Ran off road</i> was second (24.3 percent) and sideswipe/cutoff was third (17.8 percent). Tractor-trailers remained relatively consistent as a proportion of total vehicles in crashes. The number of crash involved straight trucks increased.								
17. Key Words	18. Distribution Statement								
Crash	This document is a	vailable through the Na	tional Technical						
Beltway		Information Service	e, Springfield, VA 2216	51					
Interstate									
19. Security Classif.(of this report)	20. Security Classif	(of this page)	21. No. of Pages	22. Price					
Unclassified	Unclassifie	ed	51						
۰ <u></u>	·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	L					

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Table of Contents

Technical Report Documentation Page	i
Table of Contents	ii
I. Introduction	1
II. Background	1
III. Method Crash Coding	1-3
Vehicle Miles Traveled	2
Average Number of Crashes per Tenth Mile	
IV. Results Crashes Over Time Crash Types.	4-23
Crash Type Characteristics	8
V. Discussion	24
References	25
Appendix General Crosstabs Combined States General Crosstabs Maryland	A
General Crosstabs Virginia	C

I. Introduction

The Capital Beltway Safety Team (CBST) was formed in January 1994 with the intent to better understand and address safety problems on the Capital Beltway. Since the group's inception, the CBST has strived to identify needs and implement measures that promote a safer driving environment for Beltway motorists.

Technical support for the CBST has been provided by, among others, the Federal Highway Administration and the National Highway Traffic Safety Administration (NHTSA). The present report is part of a series of reports that provides technical support by NHTSA through the Preusser Research Group, Inc. (PRG). This work was performed under Contract Number DTNH22-97-D-05018 between NHTSA and PRG.

II. Background

The sixty-four mile interstate highway system encircling Washington, D.C. is known as the Capital Beltway. The Capital Beltway is characterized as an over-utilized roadway system. Many segments are inadequate for the volume of traffic they carry. At times, congestion is the norm. Although capacity improvements have been made, the number of vehicles using this roadway continues to rise.

In 1994, Preusser Research Group (PRG) obtained Capital Beltway crash report data for a twelve month period, October 1992 through September 1993. PRG analyzed the data and provided the CBST with an identification of driver and vehicle behavior associated with crashes on the Beltway (Preusser et al., 1994). In 1995, crash report data for the period October 1993 through December 1994 were obtained. Using data for calendar years 1993 and 1994, PRG again provided the CBST with a crash analysis (Solomon et al., 1996). In both studies, crash type analysis was the primary technique used to explain how and why crashes had occurred.

More recent Beltway crash data, for years 1995 and 1996, have since been obtained. These data, aggregated with the prior data, are used to examine trends in crashes that occurred over the four year period 1993 through 1996. Special attention is given to examining crashes by crash type and vehicle miles traveled.

III. Method

Previously, the states of Maryland and Virginia had provided hard-copy crash reports for all crash events occurring on the Capital Beltway during 1993 and 1994 (N = 4,447). For the current study, Maryland and Virginia provided additional crash reports for all crash events occurring on the Capital Beltway during 1995 and 1996. Each report was assigned a case number for tracking purposes. The reports were then screened for usability. A usable crash report documents an event that included one or more vehicles involved in a collision. This event must have occurred on, or originated from: the mainlines of travel; ramps leading to and away from the Beltway; or collector distributor lanes. Reports not meeting these criteria were removed. All non-Beltway crash reports were removed. Several Maryland reports detailed a non-collision vehicle fire. These were excluded. Finally, duplicate copies of crash reports were removed. After unusable reports were removed, 5,447 crash reports were left, 3,376 from Maryland and 2,071 from Virginia. Reports detailing crashes on ramps leading to and away from Virginia. Although reports pertaining to crashes on ramps were coded and keypunched, they were not included in the general analysis of Beltway crashes. Therefore, the total number of analyzed reports (N = 4,956) is lower than the number coded and keypunched. Assigning crash codes to these reports was the next step.

Crash Coding

Crash type analysis is a technique that uses established crash type definitions to identify pre-crash characteristics leading to a crash occurrence. The focus is on driver behavior and vehicle movement just prior to a crash event. Numerous studies have used crash type analysis to learn how and why crashes occur. Crash type analysis was developed by Snyder and Knoblauch (1971) and used to study pedestrian crashes (Knoblauch, 1977). The technique has since been applied to the study of bicycle crashes (Cross and Fisher, 1977), motorcycle crashes (Preusser et al., 1995), urban crashes (Retting et al., 1995) and more recently fatal crashes between large trucks and passenger cars (Braver et al., 1996).

The crash type definitions used in this study were developed for classification of crash reports used in the initial CBST study (Preusser et al., 1995). The development of the definitions was an iterative process whereby reports were read and grouped by identifiable defining characteristics. Subsequent groups were formed as appropriate. Crash type codes were then assigned. Crash type definitions used are shown in Table 1.

Using the above pre-defined definitions, the 1995 and 1996 crash reports were coded. Crash type codes were then keypunched with other coded crash report information to form a data set. This newest data set was then combined with the 1993 - 1994 data set to form a single 1993 - 1996 data set usable for computer analysis (N=9,403).

Vehicle Miles Traveled

Vehicle miles traveled (VMT) figures for 1993, 1994 and 1995 were obtained from the U.S. Department of Transportation Computer Center. VMT is given by interstate roadway number and by state and county. VMT for I-495 and I-95 in the Maryland and Virginia counties containing the Beltway were totaled by year. Figures for 1996 were not available at the time of this study. Measured percentage differences between 1993 and 1994 and between 1994 and 1995 were averaged and used to estimate Beltway VMT for 1996. In this document, VMT should be interpreted as annual. VMT is given as million vehicle miles traveled (MVMT). A determination of change in the rate of total crashes and injury/fatal crashes on the Beltway was made using MVMT.

Average Number of Crashes per Tenth Mile

The average number of crashes per tenth mile was determined by counting all crashes within a one-mile range surrounding each tenth mile. The number of crashes for a particular tenth mile was added to the number occurring within the five tenths "upstream" and four tenths "downstream." The total was divided by ten. This method of looking at the distribution of crashes across Beltway mile points serves two purposes. First, officers do not always record crashes at their exact locations but in near proximity (i.e., in whole miles). Second, using a one-mile "moving" average clearly "smoothes" the overall distribution, making trends easier to discern.

The average number of crashes per tenth mile was calculated using data for combined years 1993 and 1994, then again using combined data for years 1995 and 1996. The 1995/1996 averages were then normalized to account for change in VMT since 1993/1994. The difference in average number of crashes per tenth mile between each two-year period was then calculated.

Statistical Significance

Variables of interest are shown by year in Appendices A, B and C. Level of significance is indicated for each.

Major Types

<u>Stop/Slowing</u> One vehicle slows or stops on the roadway and is rear-ended by some other vehicle. Typically, the first vehicle slows or stops in response to congestion. The trailing vehicle does not slow down in time, thus rear-ending the first vehicle.

<u>Ran Off Road</u> A vehicle leaves the road and strikes some object, or overturns, at the roadside, on the shoulder, or at another point off the main travel lanes. Vehicles may leave the roadway for a variety of reasons including loss of control and being forced off the road by some other vehicle.

<u>Sideswipe/Cutoff</u> A vehicle is struck in the side by some other vehicle that is changing lanes. This crash group includes lane changes that were "forced" by traffic congestion ahead. Most often, one car (or light truck, van or motorcycle) sideswipes another car. Second most common is a tractor-trailer sideswiping a car.

Other and Less Frequent Types

<u>Lost Control in Road</u> A vehicle spins, slides or overturns out of control on the main travel lanes. (Similar to "Ran Off Road" except that the first harmful event occurs on the main travel-lanes.)

<u>Run Down</u> One vehicle, traveling straight ahead, is run down from behind by a faster moving vehicle.

<u>Ramp Related</u> Collision between one or more vehicles on the main line and one or more vehicles in the acceleration or deceleration lane(s).

<u>Disabled Vehicle in Road</u> A vehicle becomes disabled, stops on the main line, and is s truck by some other vehicle on the main line. (This type does not include disabled vehicles on the shoulder or median.)

Obstacle in Motion A vehicle is struck by some debris in motion on the main line.

Obstacle in Road A vehicle strikes stationary debris on the main line.

Driver Black-Out Driver loses control of the vehicle because of some medical problem.

<u>Other/Unknown</u> A variety of other circumstances (includes police and highway department activity.)

IV. Results

Crashes Over Time

The number of reported crashes increased each successive year from 1993 through 1996 (Table 2). Vehicle miles traveled also increased each of these years. The crash rate per MVMT remained consistent from 1993 through 1995 (.45) followed by a decrease in 1996 (to .43). The rate of injury/fatal crashes per MVMT was identical from 1993 through 1995 (.19) followed by a decrease in 1996 (to .18).

In Maryland, the number of reported crashes in 1993 equaled 1,323. By 1994, a relatively small decrease occurred (to 1,301). Between 1994 and 1995, the number increased by 26.7 percent (to 1,649). The number remained nearly identical in 1996 (1,640). Over the four year period, crash rates per MVMT went from .45 in 1993 to its lowest in 1994 (.43), highest in 1995 (.50) and dropped to .46 in 1996. The rate of injury/fatal crashes was highest in 1993 (.22). By 1996, the injury/fatal crash rate was .20.

The number of reported crashes in Virginia increased 14.5 percent from 1993 (850) to 1994 (973). The number decreased by 18.5 percent in 1995 (to 793), then increased 10.2 percent for the year 1996 (874). Per MVMT, crash rates increased from 1993 (.44) to 1994 (.47), but then decreased in 1995 (to .37), followed by a relatively small increase in 1996 (to .38). Injury/fatal crashes on a MVMT basis were identical for years 1993, 1995 and 1996 (.15). The rate in 1994 equaled .17.

			Year						
	1993	1994	1995	1996					
Beltway									
MVMT	4,872.0	5,091.7	5,484.4	5,825.2*					
Total Crashes	2,173	2,274	2,442	2,514					
Per MVMT	.45	.45	.45	.43					
Injury/Fatal Crashes	949	947	1,021	1,048					
Per MVMT	.19	.19	.19	.18					
Maryland		<i>,</i>							
MVMT	2,929.6	3,009.1	3,317.0	3,535.6*					
Total Crashes	1,323	1,301	1,649	1,640					
Per MVMT	.45	.43	.50	.46					
Injury/Fatal Crashes	655	589	703	714					
Per MVMT	.22	.20	.21	.20					
Virginia									
MVMT	1,942.8	2,082.6	2,167.3	2,289.6*					
Total Crashes	850	973	793	874					
Per MVMT	.44	.47	.37	.38					
Injury/Fatal Crashes	294	358	318	334					
Per MVMT	.15	.17	.15	.15					
*									

Table 2. Total Crashes and Injury/Fatal Crashes per Million Vehicle Miles Traveled (MVMT) by State and Year

* estimated

The number of injury/fatal crashes per route has shifted over time (Figure 1). In Maryland, the number of injury/fatal crashes on I-495 decreased by 36.6 percent from 1993 to 1996 while I-95 injury/fatal crashes increased by 42.4 percent. During the same time period, injury/fatal crashes in Virginia increased by 39.2 percent on I-495 and decreased by 27.3 percent on I-95.

Fig. 1. Number of Injury/Fatal Crashes per State, Route and Year

Crash Types

Overall, the distribution of crashes by crash type remained relatively consistent over time. The three most frequently occurring crash type categories, *stop/slowing*, *ran off road* and *sideswipe/cutoff*, accounted for 7,335 crashes (Table 3). This equals 78.0 percent of the total crashes. The remaining 2,068 crashes (22.0 percent) were distributed in less frequent categories. Two less frequent categories contained over half of these crashes, *lost control in road* (6.7 percent) and *run down* (5.3 percent). Per state, the distribution also has remained relatively consistent (Table 4).

Stop/Slowing (3,381 crashes; 36.0 percent)

Beltway crashes were most frequently coded *stop/slowing*. In this category, the lead vehicle slowed, stopped or was beginning to accelerate from a stopped position in a main travel lane and was struck by a second vehicle coming from behind. In most cases, the crash report had enough information to assign a sub-group of *stop/slowing*. Five sub-groups were assigned: *congestion related*; *lead vehicle swerve*; *follow vehicle swerve*; *not congestion related*; and *unknown*.

Typically, stop/slowing crashes were congestion related (2,756). Reports indicated that a lead vehicle slowed or stopped due to congestion and a following vehicle, coming from behind, in the same travel lane, did not reduce speed quickly enough to avoid a rear-end collision.

Two variations of *stop/slowing* crashes that were typically congestion related were *lead vehicle swerve* (113) and *follow vehicle swerve* (118). In *lead vehicle swerve*, a vehicle changed lanes in front of a second vehicle, then slowed down immediately. In *follow vehicle swerve*, a vehicle changed lanes, coming in behind a vehicle that had already slowed or stopped. These two sub-groups usually involved

maneuvers where a swerving vehicle attempted to avoid a *stop/slowing* crash in one lane, only to become involved in a crash in an adjacent lane.

		Y				
Crash Type	1993	1994	1995	1996	Total	Percent
Stop/Slowing	804	807	<i>843</i>	927	3,381	36.0%
Congestion	625	684	683	764	2,756	29.3%
Lead Vehicle Swerve	28	29	- 28	28	113	1.2%
Follow Vehicle Swerve	39	24	31	24	118	1.3%
Not Congestion	57	47	77	63	244	2.6%
Unknown	55	23	24	48	150	1.6%
Ran Off Road	513	528	631	610	2,282	24.3%
Sideswipe/Cutoff	362	447	422	441	1,672	17.8%
Car > Car	178	185	203	202	768	8.2%
TrT > Car	81	105	112	101	399	4.2%
Car > TrT	49	50	48	61	208	2.2%
Other/Unknown	54	107	59	77	297	3.2%
Other Less Frequent	494	492	546	536	2,068	22.0%
Lost Control in Road	145	157	157	169	628	6.7%
Run Down	116	134	134	110	494	5.3%
Ramp Related	62	54	58	57	231	2.5%
Obstacle in Motion	42	32	29	32	135	1.4%
Obstacle in Road	28	24	31	43	126	1.3%
Disabled Vehicle in Road	39	16	24	16	95	1.0%
Driver Black Out	8	3	2	4	17	0.1%
Other/Unknown	54	72	111	105	342	3.6%
Total	2,173	2,274	2,442	2,514	9,403	100.0%

Table 3. Distribution of Crashes by Type and Year

Table 4. Percent Distribution of Crashes by Major Crash Type, State, and Year

Maryland					Virginia				
Major Crash Type	1993	1994	1995	1996	 1993	1994	1995	1996	
Stop/Slowing	32.7	29.7	30.4	31.9	43.6	43.3	43.1	46.2	
Ran Off Road	27.1	27.3	28.3	26.5	18.2	17.8	20.7	20.1	
Sideswipe/Cutoff	15.3	18.2	17.2	18.4	18.7	21.6	17.5	16.0	
Other Less Frequent	24.9	24.8	24.1	23.3	19.4	17.4	18.7	17.6	

/

Fewer crashes could not be associated with traffic congestion and were sub-grouped *not congestion related* (244). These crashes included situations where the lead vehicle slowed because of: mechanical problems; debris on the roadway; some other obstruction; or an illegal stop or turn.

Some crashes (150), for various reasons, could not be sub-grouped and were coded unknown.

Ran Off Road (2,282; 24.3 percent)

Ran off road was the second most frequently occurring crash type. In this situation, a vehicle left the main travel lanes and overturned or struck some off-road object. Unlike *stop/slowing*, these events were not typically congestion related and usually involved a single vehicle.

Sideswipe/Cutoff (1,672; 17.8 percent)

Sideswipe/cutoff was the third most frequently occurring crash type. This group of crashes involved a vehicle changing lanes into another vehicle. They differed from *lead vehicle swerve* and *follow vehicle swerve* crashes in that the crash occurred during the lane change and not immediately thereafter. Reports indicated that congestion was often a factor in *sideswipe/cutoff* crashes and that lane change maneuvers were often in response to slower moving traffic ahead. In some cases, the maneuver was made while attempting to exit the Beltway, and in a few cases, the maneuver was made by an inattentive driver.

Four sub-groups were assigned to *sideswipe/cutoff*. The sub-groups were used to identify each type of vehicle involved and indicated which vehicle was the striker. The sub-groups include *light vehicles crashing into light vehicles* (768); *tractor-trailers crashing into light vehicles* (399); *light vehicles crashing into tractor-trailers* (208); and *other/unknown* (297). Crashes involving straight trucks were included in *other/unknown*.

Other and Less Frequent Types

Lost Control in Road (628; 6.7 percent)

This less frequent crash type is similar to *ran off road*. The difference is that the harmful event occurred on a main travel lane. A vehicle in a *lost control in road* crash first lost control on the main travel lanes then experienced a harmful event on the main travel lanes. These crashes were typically multiple vehicle events.

Run Down (494; 5.3 percent)

In these crashes, a lead vehicle traveling at a constant rate of speed was literally "run down" from behind by a faster moving vehicle. These crashes were most often caused by inattentive drivers who were speeding or going too fast for roadway conditions.

Ramp Related (231; 2.5 percent)

Crashes coded *ramp related* involved a vehicle on an acceleration or deceleration lane attempting to move onto or off of the Beltway. A crash event qualified as *ramp related* when the first harmful event occurred during the merge action. Some of these crashes had characteristics of a *sideswipe/cutoff* crash or a *stop/slowing* crash but were distinguished from these two other crash types by the physical location on the ramp.

Obstacle in Motion (135; 1.4 percent)

In these crashes, debris moving along or across the road struck, or was struck by a vehicle in transit. The severity of these crashes appeared dependent upon the size of the obstacle in motion. Typical obstacles included tires or tire parts, rocks and other loose materials falling from trucks.

Obstacle in Road (126; 1.3 percent)

This crash type is similar to *obstacle in motion*, except that the debris struck was resting in the roadway.

Disabled Vehicle in Road (95; 1.0 percent)

In these crashes, one vehicle struck a second that had become disabled on the main travel lanes.

Driver Black Out (17; 0.1 percent)

This crash type covered specific medical conditions, such as a heart attack or seizure. This type does not include drivers who fell asleep or who were intoxicated.

Other/Unknown (342; 3.6 percent)

This crash type included situations where the dynamics of the crash could not be determined. Also included in this category were situations related to police and/or highway department activity.

Crash Type Characteristics

Beltway crash reports include information describing pertinent crash characteristics. Examination of selected characteristics provided evidence for when and under what conditions crashes occurred. Characteristics were examined by year, 1993 through 1996. Most of the characteristics displayed relatively little or no change over time. The sections below focus on whether or not change occurred, patterns of crash characteristics and crash type distribution among these characteristics.

Time of Day

Level of traffic can influence when crashes will occur. Beltway traffic is heaviest during weekday rush hour periods and, to a less extent, the daylight time in between. On the Beltway, more traffic often means more congestion. A crash type like *stop/slowing*, more times than not, involves traffic congestion. Therefore, this type of crash is more likely to happen when traffic congestion is present. Traffic congestion has less influence on the other crash types, and therefore, these types are spread more evenly across hours of the day.

The distribution of crashes by hour remained relatively unchanged between 1993 and 1996. Across all years, crashes occurred most often during the afternoon rush hours 3:00 p.m. to 6:59 p.m. (28.3 percent). The 5 p.m. hour had the greatest frequency of crashes (8.7 percent). A relatively large number of crashes occurred during the morning rush hours, 6:00 a.m. to 9:59 a.m. (21.6 percent). Combined, the two rush hour periods contained nearly one-half of the Beltway crashes (49.9 percent).

Ran off road was the most evenly distributed crash type. These crashes occurred at all hours. Less frequent crash types also occurred at all hours of the day but with small increases around the rush hour periods. Sideswipe/cutoff was present primarily during daytime and early evening hours. Stop/slowing was less likely to occur in early a.m. hours and late p.m. hours. Instead, these crashes occurred most often during rush hour periods. Rush hour periods were dominated by stop/slowing. Between 6:00 a.m. and 9:59 a.m., 44.2 percent of crashes were stop/slowing and between 3:00 p.m. to 6:59 p.m., 54.3 percent. In comparison, stop/slowing makes up 36.0 percent of total crashes.

Day of Week

Virtually no change occurred in the distribution of crashes by day of week. Across all years, the number of crashes increased on successive weekdays, Monday (13.5 percent), Tuesday (14.5 percent) and Wednesday (15.3 percent). The percentage of crashes on Thursdays (15.0 percent) was only -.3 of a percentage point less than on Wednesday. More crashes occurred on Friday (19.3 percent) than on any other day. Fewer crashes occurred on weekend days: Saturday (12.4 percent) and Sunday (9.6 percent).

8

1

Twice as many *stop/slowing* crashes occurred on a weekday than on a Saturday or a Sunday. Overall, 85.7 percent of *stop/slowing* crashes occurred on the five weekdays. *Ran off road* crashes occurred more on a weekend day than any other crash type. Over one-third (35.2 percent) occurred on weekend days. In comparison, only 14.1 percent of *stop/slowing*, 21.0 percent of *sideswipe/cutoff* and 24.0 percent of the combined *other less frequent* types occurred on Saturday and Sunday. *Ran off road* crashes accounted for 41.0 percent of weekend crashes. In comparison, they account for only 24.3 percent of total crashes.

Month of Year

The distribution of crashes by month remained relatively even across all months. Crash type distribution also was relatively even across all months.

Weather Conditions

The distribution of crashes by weather condition remained relatively consistent over time. Most crashes occurred in clear weather (78.5 percent). Some (19.8 percent) occurred during rain or snow, and few (1.3 percent) were reported in fog.

Road Surface Condition

Road surface condition on which crashes occurred remained mostly consistent. Most crashes were on dry roads (71.1 percent), some were on wet roads (23.6 percent), and a small percentage were on snowy (2.5 percent) or icy roads (2.3 percent). Icy conditions in calendar year 1994 (5.2 percent) were more frequent than in other years. Icy roads contributed to 1.4 percent of crashes in 1993 and 1.3 percent in 1995 and 1996.

Weather and road surface conditions were likely contributing factors in some of the Beltway crashes. The percentage of *ran off road* (27.4 percent) and *lost control in road* (44.5 percent) crashes that occurred in the rain or snow was much higher than the percentage of *stop/slowing* (16.5 percent) and *sideswipe/cutoff* (13.2 percent) crashes. Likewise, *ran off road* (38.7 percent) and *lost control in road* (57.8 percent) occurred on wet, snowy or icy pavement more than *stop/slowing* (23.9 percent) and *sideswipe/cutoff* (19.5 percent).

Alcohol in Crashes

The total number of alcohol and drug related crashes across 1993 through 1996 was 663, 7.1 percent of the total crashes (Table 5). Over the four-year period, alcohol related crashes were proportionally highest in 1993 and lowest in 1994. In 1995, the number of alcohol related crashes surpassed the 1993 total but did not surpass as a proportion of the total crashes. In 1996, the number and proportion decreased again but did not decrease below 1994 levels.

		Ye	ar		
	1993	1994	1995	1996	Total
Total Crashes	2,173	2,274	2,442	2,514	9,403
Number Unrelated Number Related	1,998 175	2,139 135	2,260 182	2,343 171	8,740 663
Percent Related	8.1	5.9	7.5	6.8	7.1

Table 5. Number and Percent of Alcohol and Drug Related Crashes per MVMT by Year

Alcohol related crashes occurred most on Saturday (21.7 percent) followed by Sunday and Friday (18.1 percent). They occurred less Monday through Thursday (9 percent to 13.6 percent).

Alcohol or drug use was present in four of the 55 fatal crashes (7.3 percent). The percentage of injury/fatal crashes that was alcohol related equaled 8.9 percent in 1993, 6.2 percent in 1994, 8.7 percent in 1995 and 8.7 percent in 1996. The percentage of injury/fatal crashes that was alcohol related (8.2 percent) was slightly higher than the average percentage (7.1 percent) for total crashes.

Passenger vehicle drivers were reportedly under the influence of alcohol or drugs or some combination at a rate of 4.8 percent. In comparison, 1.5 percent of tractor-trailer and straight truck drivers were reportedly using alcohol or drugs. There was a high percentage of "unknown alcohol use" in driver data. Use was either not reported or unknown for 12.3 percent of the passenger vehicle drivers, 11.9 percent of the tractor-trailer drivers and 9.3 percent of the straight truck drivers.

Alcohol related crashes were distributed differently than non-alcohol related crashes among crash types (Table 6). The difference appeared each year, 1993 through 1996. Alcohol related crashes were distributed mostly in *ran off road* (42.9 percent) whereas a much lower percent of non-alcohol related crashes were *ran off road* (22.9 percent). Alcohol related crashes also were less often *stop/slowing* (14.4 percent) than non-related crashes (37.6 percent). Both related and non-related crashes were relatively the same in their distribution for *sideswipe/cutoff*.

Table 6. Percent Distribution of Alcohol	Related	Crashes
by Crash Type		

	Stop/ Slowing	Sideswipe/ Cutoff	Ran Off Road	Other	Total
Alcohol Related	14.4	16.4	42.9	26.3	100.0
Not Related	37.6	17.9	22.9	21.7	100.0
Total Crashes	36.0	17.8	24.3	22.0	100.0

Fatal Crashes

. .

s de la composition de la comp

Between 1993 and 1996 fatal crashes decreased in number each succeeding year. The total number of fatal crashes in 1996 was nine, nearly half the total in 1993 (Figure 2).

Fatal crashes occurred more often on Maryland Beltway portions. From 1993 to 1996, 42 (76.4 percent) of the fatal crashes occurred in Maryland and 13 (23.6 percent) in Virginia. Fatal crashes in Maryland occurred more often on I-95 (33) than on I-495 (9). Of the 13 fatal crashes in Virginia, six occurred on I-495 and seven on I-95.

Crash reports indicated that less than half (45.5 percent) of the fatal crashes occurred during daylight hours and that most occurred on Saturday and Sunday (40.0 percent). The three weekdays at the beginning of the workweek, Monday (12.7 percent), Tuesday (14.5 percent) and Wednesday (16.4 percent), contained a combined 43.6 percent of the fatal crashes. Thursday (7.3 percent) and Friday (9.1 percent) contained the least.

From 1993 to 1996, only once were there more than 3 fatal crashes in one calendar month. Seven fatal crashes occurred in July 1993. Fatal crashes occurred least often in January (1.8 percent) and most often in July (20.0 percent), December (12.7 percent) and June (10.9 percent).

Fig. 2. Number of Fatal Crashes by Year

Crash typing fatal crash reports found that 23 of 55 (41.8 percent) exhibited ran off road characteristics (Figure 3). In comparison, only 24.3 percent of total crashes were categorized ran off road. Only a small percentage of fatal crashes were *stop/slowing* (14.5 percent) and fewer were *sideswipe/cutoff* (7.3 percent), whereas overall crashes occupied a much larger percentage (36.0 and 17.8 percent). Over one-third (36.4 percent) of the fatal crashes were classified *other*.

Fatal crashes were more likely to occur in clear weather (89.1 percent) and on dry roads (83.6 percent). Only four (7.3 percent) involved alcohol or drugs. Eleven (20.0 percent) involved at least one tractor-trailer. Nine (16.4 percent) involved at least one straight truck. The number of fatal crashes involving no trucks was 35 (63.6 percent). Nine (16.3 percent) involved at least one pedestrians.

Fig. 3. Percent of Fatal Crashes by Crash Type

Passenger Vehicle Drivers

The number of passenger vehicle crashes increased 14.0 percent from 1993 to 1996. The increase was distributed across all age categories (Figure 4). Driver age groups that grew over ten percent

included ages 31 through 40 (+29.0 percent), under 21 (+22.7 percent), over 70 (+21.7 percent) and 41 through 50 (+16.1 percent).

No age group decreased in number, although some had only small increases. Drivers age 21 through 30 only had a +2.3 percent increase in number. Drivers in this age group proportionately dominated all drivers in crashes. They accounted for 33.3 percent of drivers in crashes across all years. In each successive year, though, the proportion of drivers in this age group dropped. In 1993, the group contained 35.4 percent of drivers but in 1996 just 31.8 percent. The age group chronologically following, 31 through 40, grew each year. In 1993, these drivers were 22.7 percent of drivers in crashes. In 1996, they were 25.7 percent.

Fig. 4. Number of Passenger Vehicle Drivers in Crashes by Age Categories, 1993 Versus 1996

Over time, the distribution of drivers by age and crash type remained relatively consistent. As driver age increased towards age 70, *ran off road* appeared less (Table 7). Nearly one of every five drivers under age 21 (20.9 percent) was involved in *ran off road* crashes. In comparison, close to one of every ten drivers aged 51 through 60 (10.8 percent) or 61 through 70 (10.3 percent) was involved in *ran off road* crashes. As driver age increased towards age 60, *stop/slowing* and *sideswipe/cutoff* appeared more often. The increase, although subtle, is constant. The proportion of each age group that was *less frequent/other* was relatively even through age 70 and slightly higher for drivers older than 70.

Drivers over 70 showed many fewer *stop/slowing* crashes than younger drivers. One possible explanation is that they drive much less frequently during rush hours.

	Age Group							
Major Crash Type	<21	21-30	31-40	41-50	51-60	61-70	71+	Avg.
Stop/Slowing	45.0	45.4	48.5	48.8	52.1	51.6	31.5	46.5
Sideswipe/Cutoff	13.8	15.3	15.6	18.3	18.5	18.4	28.5	16.9
Ran Off Road	20.9	18.2	14.5	12.0	10.8	10.3	13.8	15.5
Less Frequent/Other	20.3	21.1	21.4	21.0	18.5	19.7	26.3	21.1

Table 7. Percent Distribution of Passenger Vehicle Drivers by Age and Crash Type

Gender of driver was reported only in the Maryland crash reports. Data pertaining to drivers with known gender revealed that 64.5 percent were male and 35.5 percent were female. Crash type distributions for males and females were nearly identical.

Across all years, 55.7 percent of passenger vehicle drivers who crashed on the Beltway were living over ten miles away (Table 8); fewer drivers (27.2 percent) were living ten miles or less outside of the Beltway; even fewer were living inside the loop (17.1 percent). Drivers residing inside the Beltway or within three miles began to decrease after 1994 through 1996. This may suggest that over time fewer residents from these locations were using the Beltway or that more drivers were residing further out.

Driver Residence	1993	1994	1995	1996	Avg.
Inside the Beltway	17.9	17.4	16.8	16.4	17.1
Outside up to 3 Miles	13.8	13.6	13.0	13.1	13.4
>3 to 10 Miles Away	13.1	13.4	14.7	14.1	13.8
Other MD/VA	36.4	34.3	39.3	38.5	37.1
Non MD/VA/DC	12.1	12.5	10.4	12.1	11.8
Unknown	6.7	8.8	5.8	5.9	6.8

Table 8. Percent of Passenger Vehicle Drivers in Crashes by Residence and Year

Trucks in Crashes

Comparisons between truck and non-truck vehicles required creation of two additional data sets. One included only truck vehicle information. The other included only non-truck vehicle information. The data sets contained driver level information for every vehicle in a Beltway crash. Therefore, if more than one truck type was involved in any single crash event, information regarding all of the involved truck types could be analyzed.

The number of tractor-trailers in crashes fluctuated over time (Table 9). By 1996, the total number was 399. This was a 17.0 percent increase compared to the total in 1993 (341). Non-trucks increased 14.2 percent over the same time period. The percent of total vehicles in crashes that were tractor-trailers stayed relatively consistent across the years. They never made up less than 7.4 percent of vehicles in crashes and never more than 8.9 percent.

Vehicle Type	1993	1994	1995	1996	Total
Tractors	341	421	359	399	1,520
%	7.7	8.9	7.4	7.8	7.9
Straight Trucks	226	320	313	343	1,202
%	5.1	6.8	6.4	6.7	6.3
Total Trucks	567	741	672	742	2,722
%	12.8	15.7	13.8	14.4	14.2
Non-Trucks	3,858	3,968	4,208	4,402	16,436
%	87.2	<i>84.3</i>	86.2	85.6	85.8
Total	4,425	4,709	4,880	5,144	19,158

Table 9. Number and Percent of Truck Types by Year

The total number of straight trucks in crashes in 1994 (320) was 41.6 percent higher than the total number in 1993 (226). By 1996, the number had grown to 343. The percentage of total vehicles in crashes that were straight trucks increased +1.7 percentage points from 1993 (5.1 percent) to 1994 (6.8 percent) and remained nearly that in 1996 (6.7 percent).

The distribution of crash types for tractor-trailers differs from that of straight trucks and nontruck vehicles (Table 10). The straight truck distribution more closely resembles the non-truck distribution than the tractor-trailer distribution. Relatively little variation occurred in vehicle type distribution by crash type over time.

Across the years, *stop/slowing* was most predominant for non-truck (46.4 percent) and straight truck (38.6 percent) vehicles. Compared to these vehicle types, tractor-trailers were less than half as likely in *stop/slowing* crashes (18.2 percent).

Sideswipe/cutoff was most predominant for tractor-trailers (46.1 percent). Tractor-trailers were in this category at over twice the rate of straight trucks (20.7 percent) and nearly three times that of non-truck vehicles (16.9 percent). Of tractor-trailers in sideswipe/cutoff, 54.5 percent were identified as a tractor-trailer moving into a lane already occupied by a passenger vehicle and 29.0 percent were identified as a passenger vehicle moving into a lane already occupied by a tractor-trailer. Other and unknown sub-types of sideswipe/cutoff accounted for 16.5 percent.

Non-truck vehicles were in *ran off road* crashes 15.5 percent of the time. Truck vehicles were less likely to be in *ran off road* crashes. Tractor-trailers were least likely. Straight trucks more closely resembled non-truck vehicles though they still were less likely.

	Year							
<u>Crash Type</u>	1993	1994	1995	1996	Ave.			
Tractor-trailer								
Stop/Slowing	20.8	18.5	15.0	18.3	18.2			
Sideswipe/Cutoff	44.6	46.1	47.9	45.9	46.1			
Ran Off Road	8.5	7.4	7.8	8.0	7.9			
Less Frequent/Other	26.1	28.0	29.2	27.8	27.8			
Total	100.0	100.0	100.0	100.0	100.0			
Straight Truck								
Straight Truck	131	33 4	41 5	36.2	38.6			
Sidoguino/Cutoff	40.4 01 7	23.7	17.6	30.2	20.7			
Sideswipe/Cutoff	120	21.5	12.1	14.0	127			
Kan Oli Road	12.0	13.0	12.1	14.9	27.0			
Less Frequent/Other	22.1	30.3	20.0	20.8	27.0			
Total	100.0	100.0	100.0	100.0	100.0			
Non-Trucks								
Stop/Slowing	46.8	46.4	44.8	47.8	46.4			
Sideswipe/Cutoff	15.9	18.0	16.8	16.7	16.9			
Ran Off Road	15.0	14.9	16.5	15.6	15.5			
Less Frequent/Other	22.3	20.6	21.9	19.9	21.2			
Total	100.0	100.0	100.0	100.0	100.0			

Table 10. Percent of Vehicle Type by Crash Type and Year

Other less frequent types of crashes contained a higher proportion of tractor-trailers and straight trucks than non-truck vehicles. Among these types, lost control in road and run down collected the most trucks. Lost control in road contained 8.4 percent of tractor-trailers and 7.9 percent of straight trucks. Run down contained 6.4 percent of tractor-trailers 6.9 percent of straight trucks.

Tractor-trailers and straight trucks were more often involved in multiple three and four vehicle crashes in 1995 and 1996 as compared with earlier years (Figure 5). Average number of vehicles per crash for non-trucks has remained nearly unchanged. Straight trucks show the most increase. From 1993 to 1996 the average number of vehicles per crash involving a straight truck, increased by +.19 vehicles. As of 1996, crashes involving a straight truck averaged 2.42 vehicles.

Fig. 5. Mean Number of Vehicles per Crash by Vehicle Type and Year

The distribution of truck crashes by day of week showed relatively no change over time. For all years, trucks were in crashes mostly on weekdays and less often on weekend days. Tractor-trailers were in weekday crashes 86.6 percent of the time and straight trucks 85.4 percent. For both truck types, Sunday had the least crashes followed by Saturday.

The frequency of straight trucks in crashes increased as weekdays progressed, Monday (16.0 percent) through Friday (18.4 percent). Tractor-trailers had a slight mid-week drop in the frequency of crashes on Thursday (15.2 percent); otherwise, crash frequency increased as days progressed, Monday (16.4 percent) through Friday (21.1 percent).

Straight truck crashes were spread more evenly than tractor-trailer crashes across the daytime hours. This is probably because straight trucks run more during daytime business hours. On the other hand, bigger trucks are more likely to be running at all hours of the day and night. This may explain why more tractor-trailers (16.6 percent) crashed in the late evening hours, 8 p.m. up to midnight, compared to straight trucks (7.7 percent). Both truck types had more crashes during evening and morning rush hours and hours around noon.

Residence of truck drivers in crashes has remained relatively unchanged over time (Table 11). Tractor-trailer drivers usually drive long distances, and therefore, they are far away from home. Straight truck drivers normally make day trips. Most tractor-trailer drivers were from residences outside of Maryland, Virginia or DC (53 percent). A majority of straight truck drivers were living more than ten miles beyond the Beltway (49.8 percent) though still in Maryland or Virginia. Only 11.5 percent of straight truck drivers lived outside of either state or DC. Thirty-three percent of straight truck drivers lived inside or no further than ten miles from the Beltway, while only 6.3 percent of tractor-trailer drivers lived within this area.

	Tr	actor-tra	uiler			Straight Trucks				
Residence	<i>19</i> 93	1994	1995	1996	Avg.	1993	1994	1995	1996	Avg.
Inside the Beltway	1.8	3.3	1.9	1.3	2.1	12.8	15.0	10.5	8.7	11.8
Outside up to 3 Miles	.9	1.0	2.5	2.0	1.6	6.6	9.1	7.3	9.9	8.2
>3 to 10 Miles Away	1.8	2.6	3.3	2.5	2.6	16.4	9.4	11.8	14.6	12.9
Other MD/VA	29.9	28.3	34.3	31.1	30.9	50.0	47.5	52.1	49.6	49.8
Non MD/VA/DC	54.8	52.5	50.1	54.6	53.0	10.2	11.9	12.5	11.4	11.5
Unknown	10.9	12.4	7.8	8.5	9.9	4.0	7.2	5.8	5.8	5.7

Table 11. Percent Distribution of Truck Drivers by Truck Type, Residence and Year

Crash Location

For each tenth of a mile along the Beltway, the average number of crashes occurring within onehalf mile in either direction was calculated. This was done using data for combined years 1993 and 1994, then again using combined data for years 1995 and 1996. The difference between each two year period was calculated. Differences were plotted and are shown in Figures 6 through 9. Positive numbers show more crashes in 1995 and 1996. The total number of crashes (1993 through 1996) per tenth mile by inner loop (Table 12) and outer loop follow (Table 13).

Figure 6 represents the entire Maryland Inner Loop. It shows, in general, that crashes decreased on I-495 and increased on I-95. The decrease on I-495 is most evident from around mile point nine up to its approach to I-95. Some small increases are shown within the roadway's first nine miles. On I-95, the crash increase appears to be spread across the entire roadway, with crash decreases limited to only a few short locations.

Maryland's Outer Loop is shown in Figure 7. Like Figure 6, Figure 7 shows that all across I-95 crashes increased and that crashes lessened over I-495. In comparison, both figures show more massive increases occurred over a relatively long distance in the vicinity of mile point seven to thirteen on I-95. Both figures also show that within the few miles leading to and from the Woodrow Wilson Bridge crashes increased at most locations.

Fewer crashes occurred in Virginia than in Maryland. Therefore, average number differences are more likely to be less massive. Comparisons between Figures 6 and 7 and Figures 8 and 9 should be made with caution because the distance represented on the x axes differ.

Virginia's Inner Loop, shown in Figure 8, shows that crashes decreased over nearly the entirety of I-95. The most massive decrease was near mile point 174 and continued beyond mile point 172. On I-495, increases were more prevalent than decreases. Increases stand out in three vicinities. The most massive increase was between mile points six and nine. The second was between mile points nine and eleven and the third was around mile point five.

16

The Outer Loop in Virginia is shown in Figure 9. Crash increases are obvious on the I-495 portion. A noticeable increase in crash frequency, is shown from around mile point fourteen up to around mile point seven. Then, near mile point six, the beginning of a relatively large decrease is shown. The decrease stretches nearly to mile point three. Other noticeable decreases are shown near mile points two through one of I-495, and surrounding mile point 173 on I-95. Overall, crashes decreased on this portion of I-95.

Fig. 6. Maryland Inner Loop; Difference in Average Number of Crashes, 1993-1994 Versus 1995-1996

Fig. 7. Maryland Outer Loop; Difference in Average Number of Crashes, 1993-1994 Versus 1995-1996

Fig. 8. Virginia Inner Loop; Difference in Average Number of Crashes, 1993-1994 Versus 1995-1996

Fig. 9. Virginia Outer Loop; Difference in Average Number of Crashes, 1993-1994 Versus 1995-1996

 Table 12. Total Number of Beltway Inner Loop Crashes by Tenth Mile, 1993-1996

Loc	ation	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.
M	aryland	11-495	5.6	25	11.3	1	25.4	18	19.7	11	14.0	1	8.3	16	2.6	16	175.7	4	0.3	2	6.0	17	11.7	1
	0.0	6	5.7	3	11.4	0	25.3	8	19.6	53	13.9	1	8.2	9	2.5	20	175.6	8	0.4	1	6.1	8	11.8	0
	0.1	6	5.8	6	11.5	11	25.2	35	19.5	5	13.8	4	8.1	3	2.4	10	175.5	3	0.5	12	6.2	10	11.9	0
	0.2	5	5.9	7	11.6	2	25.1	13	19.4	3	13.7	1	8.0	1	2.3	5	175.4	7	0.6	0	6.3	11	12.0	11
	0.3	14	6.0	0	11.7	2	25.0	13	19.3	1	13.6	2	7.9	2	2.2	9	175.3	2	0.7	0	6.4	15	12.1	2
	0.4	19	6.1	3	11.8	4	24.9	17	19.2	1	13.5	5	7.8	6	2.1	3	175.2	2	0.8	1	6.5	12	12.2	3
	0.5	12	6.2	1	11.9	10	24.8	4	19.1	2	13.4	1	7.7	1	2.0	11	175.1	6	0.9	2	6.6	6	12.3	2
	0.6	9	6.3	2	12.0	18	24.7	5	19.0	0	13.3	8	7.6	8	1.9	9	175.0	- 7	1.0	19	6.7	12	12.4	2
	0.7	4	6.4	3	12.1	2	24.6	1	18.9	2	13.2	23	7.5	11	1.8	52	1/4.9		1.1	2	6.8	6	12.5	5
	0.8	5	6.5	1/	12.2	0	24.5	0	18.8		13.1	5	7.4	35	1.7	/2	174.8	4	1.2	2	6.9		12.6	3
	0.9	8	6.6	19	12.3	1	24.4	5	18.7	3	13.0	2	7.3	30	1.6	16	174.7	2	1.3	4	7.0	13	12.7	2
	1.0	4	6.7	50	12.4	3	24.3		18.6	22	12.9	4	7.2	13	1.5	10	174.0	(1.4	4	7.1	12	12.8	5
	1.1	201	6.8	17	12.5	25	24.2	101	18.5		12.6	3 6	7.1	- 1	1.4	/ 0	174.5	3	1.5	0	7.2	8	12.9	4
	1.2	2	0.9	0	12.0	20	24.1	'	10.4	2	12.7	5	7.0		1.3	0	174.4	3	1.0	0	7.3	15	13.0	+1
	1.0	4	7.0	3	12.7	4	24.0		10.3	2	12.0	5	0.9	ė	1.2	4	174.3	2	1.7		7.4	200	10.1	2
	1.4	1	7.1	7	12.0	2	23.9	-	10.2	14	12.5	2	67	8	10	2	174.2	2	1.0		7.5	10	12.2	2
	1.0	ျှ	7.2	12	12.9	3	23.0	5	18.0	14	12.4	7	66	3	1.0	20	174.0	12	20	12	7.0	'8	13.0	2
	17	2	7.5	12	13.0	1	23.6	8	17.9	6	12.0	13	65	ŏ	0.8	3	173.9	2	2.0	6	7.7	10	13.5	11
	1.8	5	7.4	12	13.2	11	23.5	6	17.8	3	12.2	6	6.4	4	0.0	5	173.8	1	22	ă	7.0	12	13.6	3
	19	18	7.6	õ	13.3	1	23.4	ă	17.7	1	12.0	4	6.3	o.	0.6	7	173 7	3	23	a	80	22	13.7	10
	2.0	5	7.7	3	13.4	1	23.3	6	17.6	12	11.9	3	6.2	2	0.5	46	173.6	ĭ	2.4	10	8.1	12	13.8	15
	2.1	5	7.8	14	13.5	ò	23.2	18	17.5	10	11.8	8	6.1	ō	0.4	17	173.5	15	2.5	12	8.2	4	13.9	11
	2.2	4	7.9	3	13.6	ō	23.1	28	17.4	3	11.7	3	6.0	0	0,3	6	173.4	5	2.6	23	8.3	3	14.0	13
	2.3	el	8.0	4	13.7	3	23.0	9	17.3	1	11.6	1	5.9	2	0.2	2	173.3	1	2.7	17	8.4	9	14.1	6
	2.4	41	8.1	10	13.8	0	22.9	3	17.2	1	11.5	0	5.8	7	0.1	8	173.2	4	2.8	20	8.5	2	14.2	7
	2.5	15	8.2	18	13.9	0	22.8	4	17.1	6	11.4	0	5.7	8	0.0	11	173.1	3	2.9	2	8.6	3	14.3	7
	2.6	10	8.3	49	14.0	5	22.7	2	17.0	0	11.3	2	5.6	7	Virgi	nia 1-95	173.0	12	3.0	6	8.7	3	14.4	7
	2.7	4	8.4	19	14.1	4	22.6	9	16.9	5	11.2	6	5.5	2	178.6	0	172.9	4	3.1	2	8.8	2	14.5	1
	2.8	4	8.5	12	14.2	20	22.5	10	16.8	9	11.1	6	5.4	4	178.5	0	172.8	11	3.2	6	8.9	3	14.6	1
	2.9	14	8.6	10	14.3	3	22.4	5	16.7	12	11.0	12	5.3	1	178.4	0	172.7	4	3.3	9	9.0	2	14.7	0
	3.0	3	8.7	5	14.4	1	22.3	4	16.6	34	10.9	13	5.2	2	178.3	0	172.6	13	3.4	1	9.1	2		
	3.1	3	8.8	5	14.5	0	22.2	33	16.5	14	10.8	45	5.1	0	178.2	1	172.5	18	3.5	7	9.2	1		
	3.2	6	8.9	1	14.6	0	22.1	22	16.4	3	10.7	17	5.0	2	178.1	0	172.4	21	3.6	1	9.3	6		
	3.3	၂	9.0	3	14.7	1	22.0	11	16.3	2	10.6	10	4.9	5	178.0	5	172.3	12	3.7	6	9.4	6		
	3.4	5	9.1	6	14.8	0	21.9	5	16.2	2	10.5	10	4.8	0	177.9	3	172.2	12	3.8	6	9.5	15		
	3.5	- 4	9.2	5	14.9	0	21.8	3	16.1		10.4	3	4./	3	177.8	4	1/2.1	4	3.9	3	9.6	- 11		
	3.6		9.3	6	15.0	0	21.7	0	16.0	2	10.3	9	4.6		177.7	0	172.0	43	4.0	10	9.7	4		
	3.7	40	9.4	3	15.1		21.6	1	15.9	2	10.2		4.5	11	177.5	4	171.9	15	4.1	2	9.8	, ⁸		
	3.0	'	9.5	3	15.2		21.5		15.8	្តី	10.1	-4	4.4	29	177.0	31	171.0	20	4.2	12	9.9	10		
	3.9	12	9.0	4	15.3		21.4	, i	10.7	7	10.0	20	4.3	10	177.9	5 6	171.7	4	4.5	2	10.0	';		
	4.0	15	9.7	2	15.4		21.3	5	15.0		9.9	12	4.2	2	177.3	13	171.0	18	4.4	10	10.1	1		
,	12	3	.00	-	15.5	ŏ	21.2	4	15.5	1	07	11	4.1	1	177 1	13	171.4	11	4.5	6	10.3	à		
	43	័	10.0	å	Manda	and Los	21.1	18	15.4	5	9.0	'a	3.0	7	177.0	27	171.3	3	4.0	ă	10.0) a		
	4.0	7	10.0	5	26.6	8	20.9	1	15.0	2	95	1	3.8	11	176.9	- 1	171.0	8	4.8	2	10.1	5		
	4.4	<u>,</u>	10.7	~	20.0	3	20.9	3	15.2	2	9.5	5	3.0		176.9	'n	171.2	e e	4.0	<u>ا</u> م	10.6]		
	4.6	Ť	10.3	8	26.4	4	20.0	ă	15.0	1	93	ő	36	3	176.7	1	171.0	27	50	15	10.7	6		
	47	2	10.4	14	26.3	1	20.6	5	14.9	5	9.2	7	3.5	4	176.6	2	170.9		51	ž	10.8	4		
	4.8	3	10.5	53	26.2	10	20.5	ŏ	14.8	45	9.1	13	3,4	a	176,5	ō	170.8	22	5.2	5	10.9	4		
	4.9	2	10.6	12	26.1	7	20.4	1	14.7	12	9.0	7	3.3	11	176,4	1	170.7	7	5.3	5	11.0	14		
	5.0	3	10.7	11	26.0	13	20.3	2	14.6	5	8.9	i	3.2	8	176.3	4	170.6	3	5.4	6	11.1	17		
	5.1	3	10.8	4	25.9	8	20.2	1	14.5	7	8.8	6	3.1	3	176.2	3	170.5	11	5.5	13	11.2	3		
	5.2	0	10.9	0	25.8	2	20.1	2	14.4	0	8.7	5	3.0	9	176.1	1	Virgini	a 1-495	5.6	14	11.3	0		
	5.3	ol	11.0	7	25.7	9	20.0	ō	14.3	12	8.6	2	2.9	10	176.0	9	0.0	1	5.7	14	11.4	8		
	5.4	3	11.1	4	25.6	1	19.9	9	14.2	5	8.5	6	2.8	56	175.9	1	0.1	6	5.8	4	11.5	12		
	5.5	4	11.2	10	25.5	4	19.8	10	14.1	1	8.4	5	2.7	14	175.8	3	0.2	5	5.9	11	11.6	1		_

•

Table 13.	Total Num	ber of Beltway	Outer Loo	p Crashes b	y Tenth Mile	, 1993-1996
-----------	-----------	----------------	-----------	-------------	--------------	-------------

Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location	No.	Location I	No.	Location	No.
Maryla	nd I-95	5.6	4	11.3	6	17.0	0	22.7	3	14.0	3	8.3	43	2.6	8	11.8	3	6.1	9	0.4	3	175.6	13
0.0	10	5.7	4	11.4	0	17.1	3	22.8	5	13.9	1	8.2	8	2.5	2	11.7	6	6.0	17	0.3	9	175.7	6
0.1	3	5.8	5	11.5	1	17.2	3	22.9	3	13.8	1	8.1	11	2.4	26	11.6	7	5.9	7	0.2	6	175.8	7
0.2	6	5.9	2	11.6	2	17.3	1	23.0	27	13.7	2	8.0	3	2.3	12	11.5	20	5.8	6	0.1	12	175.9	6
0.3	2	6.0	3	11.7	2	17.4	2	23.1	12	13.6	0	7.9	2	2.2	7	11.4	7	5.7	4	0.0	1	176.0	37
0.4	5	6.1	0	11.8	0	17.5	6	23.2	9	13.5	2	7.8	12	2.1	4	11.3	10	5.6	16	Virginia I-	-95	176.1	7
0.5	43	6.2	4	11.9	2	17.6	ġ	23.3	6	13.4	2	7.7	1	2.0	1	11.2	9	5.5	4	170.5	10	176.2	6
0.6	5	6.3	1	12.0	7	17.7	i l	23.4	5	13.3	3	7.6	3	1.9	9	11 1	8	5.4	7	170.6	1	176.3	20
0.7	5	64	2	121	a	17.8	الم	23.5	3	13.2	111	7.5	7	18	õ	11.0	13	53	2	170.7	o	176.4	6
0.8	5	6.5	2	12.2	ğ	17.9	5	23.6	ă	13.1	1	74	7	1.0	1	10.9	7	5.2	4	170.8	7	176.5	16
0.9	ă	6.6	6	12.3	9	18.0	3	23.7	5	13.0	2	7.3	ġ	16	Å	10.8	6	51	4	170.9	ò	176.6	4
1.0	5	6.7	10	12.4	3	18.1	13	23.8	ă,	12.9	2	72	ŝ	15	2	10.0	3	5.0	11	171.0	20	176.7	7
11	6	6.8	2	12.5	5	18.2		23.9	2	12.8	7	71	2	14	6	10.6	2	4.9	6	171.1	2	176.8	8
12	1	6.9	4	12.6	ě	183	4	24.0	- 1	12.7	à	7.0	3	13	4	10.5	- 1	4.8	7	171.2	4	176.9	9
13	1	7.0	3	127	ă	18.4	3	24.1	à	12.6	19	6.9	14	12	2	10.4	ź	47	5	171.3	2	177.0	38
14	- d	71	ĕ	12.8	Ś	185	ă	24.2	10	12.5	3	8.8	12	11	6	10.3	à	46	7	171.4	-1	177.1	21
15	ă	72	7	12.9	5	18.6	20	24.3	1	12.4	5	67	43	10	11	10.2	5	4.5	11	171.5	4	177.2	17
16	ă	73	24	13.0	7	18.7	5	24.4	- il	12.3	ĭ	66	25	0.9	3	10.1	4	4.4	6	171.6	2	177.3	13
17	16	74	16	13.1	7	18.8	3	24.5	- d	12.2	3	6.5	2	0.8	3	10.0	12	4.3	14	171.7	1	177.4	6
18	13	7.5	4	13.2	17	18.9	ŏ	24.6	ŏ	12.1	3	64	1	0.0	1	9.9	11	42	14	171.8	9	177.5	27
19	Â	7.6	A	13.3	8	19.0	ŏ	24.7	4	12.0	24	6.3	1	0.6	11	9.8	7	41	5	171.9	1	177.6	6
20	5	7.7	ŏ	13.4	3	19.1	3	24.8	2	11.9	-6	6.2	3	0.5	10	97	á	4.0	12	172.0	12	177.7	ō
21	ă	7.8	å	13.5	ň	19.2	ŏ	24.9	7	11.8	5	61	3	0.4	14	9.6	Ř	3.9	2	172.1	2	177.8	2
22	2	79	ŏ	13.6	1	19.3	5	25.0	à	11.0	Ă	6.0	ĭ	0.1	12	9.5	10	3.8	2	172.2	7	177.9	1
23	6	80	ă	13.7	1	19.0	1	25.1	17	11.6		5.9	1	0.0	6	94	11	37	2	172.3	4	178.0	ò
24	15	81	ă	13.8	10	19.5	5	25.2	49	11.5	4	5.8	2	0.1	11	93	3	3.6	1	172.4	13	178.1	ō
25	5	82	12	13.9	2	19.6	50	25.3	12	11.0		5.0	4	0.1		9.2	ŏ	3.5	5	172.5	8	178.2	1
2.0	5	83	14	14.0	5	19.7	13	25.4	15	11.3	2	5.6	13	Virginia I	-495	9.1	3	3.4	š	172.6	5	178.3	3
2.0	10	8.0		14.1	Ĭ	10.9		25.5	5	11.0		5.5	2	14 7		0.1	10	33	6	172 7	5	178.4	, o
2.7		0.4		14.1		10.0	- 1	23.5		11.2		5.5	-	14.1	2	9.0	```	3.0	6	172.8	2	178.5	õ
2.0	20	0.5	3	14.2	<u>'</u>	20.0	2	25.0		11.0	10	5.4	0	14.0	2	0.9		3.2	7	172.0	2	178.6	ň
2.9	2	0.0	- 1	14.3		20.0		25.7		10.0		5.3		14.5	2	0.0	- 7	20	á	173.0	11	170.0	0
3.0	1	0.7		14.5	ž	20.1	- 11	25.0	- 5	10.9	6	5.2	2	14.4	10	0.7	5	20	8	173.1	1		
3.1		0.0	ំ	14.5		20.2	<u>'</u>	20.9	- 20	10.0		5.1	2	14.3	2	0.0	4	2.5	0	173.2	-11		
3.2	2	0.9	5	14.0	16	20.3	2	26.0	11	10.7	14	3.0	1	14.2	2	8.5	10	2.0	å	173.3	al		
3.4		0.1	11	14.7	21	20.4	2	20.1	12	10.0	25	4.5		14.0	10	0.4	'¥	2.7	15	173.4	ă		
3.4		9.1	`÷	14.0		20.5	- 51	20.2	6	10.5	33	4.0	2	14.0	2	8.3	á	2.0	7	173.5	ă		
3.5	é	0.2		15.0	';	20.0	4	26.0	2	10.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.7	5	13.8	3	8.1	ă	2.5	5	173.6	3		
3.7	12	0.0		15.0		20.7	Ĩ	26.5	ã	10.3	1	4.0	0	13.0	4	8.0	25	2.7	ă	173.7	ě		
3.8	12	9.4	5	15.0	ĭ	20.0	5	26.5	2	10.2		4.5	4	13.6	2	7.0	- 6	2.0	Ă	173.8	3		
3.0	3	9.6	- 1	15.3	4	21.0	10	Mandand I	405	10.0	- 11	4.7		13.5	2	7.8	28	2.2	9	173.9	ĭ		
4.0		9.0	2	15.0	ő	21.0	7	15.6	755	0.0	17	4.0	13	13.4	7	7.0	- 7	20	15	174.0	22		
4.0	اړ ا	9.7		15.4	Ň	21.1	2	15.0	- XI	3.5 0.9	'',	4.2	13	13.4	2	7.6	- 4	1.0	2	174.0	5		
4.1	-	0.0	5	15.5		21.2	2	15.0	Ň	9.0	5	4.1	18	13.0	4	7.0	12	1.5	11	174.2	3		
4.2	15	10.0	~ ~	15.0	2	21.0	1	15.9	Ň	9.7		2.0	16	13.1	4	7.5	1	1.0		174.2	ň		
4.5	15	10.0	- 1	15.9	2	21.4	2	15.0	ő	9.0	2	3.5	37	13.0	20	7.4		1.7	14	174.0	4		
4.4	13	10.7		15.0	6	21.0	1	15.2	ň	0.4	~ ~	3.0	20	12.0	20	7.5		1.0		174.5	-		
4.5	2	10.2		16.0	Ň	21.0	2	15.0	ň	0.7	2	3.6	20	12.9	16	7.2	š	1.0	2	174.6	11		
4.0	4	10.3	1	16.0	, a	21.8	á	14.9	ី	9.0	7	3.5	1	12.0	4	70	13	13	2	174.7	6		
4.9		10.5		16.2	ိ	21.0	2	14.8	2	9.2		34		12.6	2	2.1	اړ :	1.5	5	174.8	ă		
4.0		10.5	á	16.3	5	22.0	13	14.5	1	9.0	- 7	3.3		12.5	7	6.6	4	11	15	174.9	1		
50	ĥ	10.0	å	16.4	10	22.0	23	14.6	- 1	89		32	à	12.5	á	67	4	1.0	54	175.0	12		
5.0	ő	10.2	20	16.5		22.2	28	14.5	- ;1	8.5	à	31	2	12.3	6	66		0.9	2	175.1	12		
52	ő	10.9	10	16.6	26	22.3	- 2	14.4	ó	87	ĭ	3.0	6	12.2	á	6.5	ž	0.8	Ā	175.2	0		
5.3	្តី	11.0	7	16.7	18	22.4	ā	14.3	ă	8.6	à	29	7	12.1	8	64	10	0.7	2	175.3	2		
54	a a	11.1	اړ ا	16.8	5	22.5	10	14.2	25	8.5	7	2.8	4	12.0	16	63	, el	0.6	8	175.4	11		
5.5	Ĩ	11.2	7	16.9	3	22.6	4	14.1	-4	8.4	9	2.7	2	11.9	2	6.2	10	0.5	24	175.5	14		

.

V. Discussion

The number of Beltway crashes continues to rise. This is not surprising because the number of vehicle miles traveled also increases each passing year. Despite the increase, there are encouraging signs that safety has improved for the Beltway. From 1993 through 1996, crashes per vehicle miles traveled decreased. And, there was a decrease in the percentage of these crashes that were alcohol related. Most encouraging is the downward trend in fatalities. In just four years, the number of fatalities has reduced by nearly half.

The frequency of crashes by location has changed over time. In Maryland, crashes increased on I-95 and decreased on I-495. In Virginia, crashes increased on I-495 and decreased on I-95. In general, change occurred over relatively long segments on these routes.

The crash type distribution remained relatively consistent over time. Three major crash types accounted for 78.0 percent of crashes. *Stop/slowing* was most common. This crash type is directly related to congestion on the Beltway. Its occurrence dominated all other types during rush hour periods, when congestion is heaviest. *Ran off road* was second most common. This type is less congestion related and happens across all hours and in all driving environments. Fatal crashes were most likely in this type. *Ran off road*, more so than others, happened during wet and icy conditions. A higher percentage of young drivers and drivers using alcohol were in *ran off road* crashes. *Sideswipe/cutoff* crashes involve more than one vehicle and are rare when traffic is minimal. These crashes are density-related to the extent that a certain amount of traffic is necessary for them to occur.

By 1996, tractor-trailers in crashes had increased in number although they remained relatively consistent as a proportion of total vehicles in crashes. Straight trucks increased in number and in proportion of total vehicles in crashes. The average number of vehicles involved in crashes with trucks has been increasing, particularly for straight trucks. As of 1996, crashes with a straight truck on average involved more vehicles than those without.

Crash type remained relatively consistent for truck vehicles. Tractor-trailers were most likely in *sideswipe/cutoff* crashes and more often the vehicle that made a lane change. They were less often *stop/slowing* and even less *ran off road*. Straight trucks more closely resembled passenger vehicles in their crash type distribution.

References

Braver, E., B., Preusser, D., F., Williams, A., F. and Weinstein, H., B. *Major Types of Fatal Crashes* Between Large Trucks and Cars. Insurance Institute for Highway Safety, Arlington, VA, 1996.

Cross, K.D. and Fisher, G. A Study of Bicycle/Motor-Vehicle Accidents: Identification of Problem Types and Countermeasure Approaches. U.S. Department of Transportation, Contract Number DOT-HS-4-00982, Washington, DC, 1977.

Knoblauch, R.L. Causative Factors and Countermeasures for Rural and Suburban Pedestrian Accidents. U.S. Department of Transportation, Contract Number DOT-HS-802-266, Washington, DC, 1977.

Preusser Research Group. Analysis of the Capital Beltway Crash Problem. U.S. Department of Transportation, Contract Number DTNH22-92-D-05270 (94-3), Washington, DC, 1994.

Preusser, D.F., Ulmer, R.L. and Williams, A.F. Analysis of fatal motorcycle crashes: crash typing from FARS data. Accident Analysis and Prevention, 1995 27(6), 845-851.

Retting, R.A., Williams, A.F., Preusser, D.F. and Weinstein, H.B. *Classifying Urban Crashes for Countermeasure Development*. Insurance Institute for Highway Safety, Arlington, VA, 1995.

Snyder, M.B. and Knoblauch, R.L. Pedestrian Safety: The Identification of Precipitating Factors and Possible Countermeasures. U.S. Department of Transportation, Contract Number DOT-FH-11-7312, Washington, DC, 1971.

Solomon, M.G., Preusser, D.F. and Leaf, W.A. Analysis of the Capital Beltway Crash Problem. U.S. Department of Transportation, Contract Number DOT-HS-808-393, Washington, DC, 1996.

Appendix A: General Crosstabs Combined States

Count Row Pct Col Pct	 1993 93	1994 94	1995 95	1996 I 96 I	Row Total	
Crash Type1 Stop/Slowing	804 23.8 37.0	807 23.9 35.5	843 24.9 34.5	927 27.4 36.9	3381 36.0	
3 Sideswipe/Cutoff	362 21.7 1 16.7	447 26.7 19.7	422 25.2 17.3	441 26.4 17.5	1672 17.8	
4 Ran Off Road	513 22.5 23.6	528 23.1 23.2	631 27.7 25.8	610 26.7 24.3	2282 24.3	
5 Other	494 23.9 22.7	492 23.8 21.6	546 26.4 22.4	536 25.9 21.3	2068 22.0	
Column Total	2173 23.1	2274 24.2	2442 26.0	2514 26.7	9403 100.0	
Chi-Square		Valu	ıe	DF		Significance
Pearson Likelihood Ratio Mantel-Haenszel tes linear associ	- t for ation	14.492 14.35 .002	259 416 129	9 9 1		.10585 .11027 .97134

Crash Type Categories by Year $$_{\rm Year}$$

Minimum Expected Frequency - 386.393 Number of Missing Observations: 0

Injury Severity by Year $_{\rm YEAR}$

	Count Row Pct Col Pct	 1993 	1994	1995	1996	Row	
		93	94	95	96	Total	
SEVERITY	1	+ - 17	1 15	+ 14	+ 1 9	+ 55	
Fatal		1 30.9 1 .8	27.3 .7	25.5	16.4 1.4	.6 	
	2	932	932	1007	1 1039	3910	
Injury		23.8 42.9	23.8 41.0	25.8 41.2	26.6 41.3	41.6	
	3	1154	1193	1326	1 1375	5048	
Property	Damage	22.9 53.1	23.6 52.5	26.3 54.3	27.2 54.7	53.7 	
	9	1 70	134	95	91	390	
Unknown		17.9 3.2	1 34.4 1 5.9	24.4 3.9	23.3 3.6	4.1	
	Column	2173	2274	2442	2514	+ 9403	
	Total	23.1	24.2	26.0	26.7	100.0	
Chi-S	Square		Valu	ue	DF		Significance
Pearson		-	29.768	- 887			.00048
Likelihood	Ratio		28.48	960	9		.00079
Mantel-Haer linea	nszel tes ar associ	t for ation	.00:	131	1		.97112

Minimum Expected Frequency - 12.710 Number of Missing Observations: 0

Any Alcohol in Crash by Year

Count	ILAN					
Row Pct	1993	1994	1995	1996		
Col Pct					Row	
ANY ALCOHOL	93	94	1 95 +	96	+ TOLAL	
1	1998	2139	2260	2343	8740	
No Alcohol/Drugs	22.9 91.9	24.5 94.1	25.9 92.5	26.8 93.2	92.9	
2	168	128	173	1 165	+ 634	
Alcohol	26.5	20.2	27.3	26.0	6.7	
	1 7.7	5.6	7.1	6.6	ł	
3	+	- 7	1 9	1 5	+ 28	
Drugs	1 25.0	25.0	32.1	17.9	.3	
	1.3	1.3	1.4	1.2	1	
4	+		+ 	1	+	
Alcohol and Drugs	Ì	1	I	100.0	1.0	· *
	1]	1	1.0]	
Column	2173	2274	2442	2514	+ 9403	
Total	23.1	24.2	26.0	26.7	100.0	:
Chi-Square	_	Val	ue	DF		Significance
Pearson		12.50	214	9		.18646
Likelihood Ratio		12.58	205	9		.18245
Mantel-Haenszel tes	t for	.73	664	1		.39074
Linear associ	ation	221				1
HINITHON DADECCED II	equency					

Cells with Expected Frequency < 5 - 4 OF 16 (25.0%) Number of Missing Observations: 0

Passenger Car Driver Residence by Year

		YEAR					
	Count Row Pct	l 1993	1994	1995	1996		÷
	Col Pct	1	94	95	96	Row L Total	
RESIDENCE		+	+	+	+	+	
	1.00	690	689	1 706	1 720	2805	4
Inside Bel	tway	17.9	17.4	16.8	16.4		
	2.00	+	+ 541	+ 	+ - 576	+ 2197	
Outside to	3 Miles	1 24.3	24.6	24.9 13.0	26.2	13.4	
ourside to) MILES	+	+	+	+	+	
	3.00	1 504	530 23 3	620 27 3	618	2272 13 8	
>3 to 10 M	iles Out	13.1	13.4	14.7	14.1	1 13.0	3
	4.00	+- 1405	+ 1 1360	+ 1653	+ 1692	+ 6110	
		23.0	22.3	27.1	27.7	37.2	
Other MD,V	A, DC	36.4 +	34.3 +	39.3 +	38.5 +- 	+	
	5.00	465	497	437	533	1932	3
Non MD,VA,	DC	1 24.1	1 25.7	1 10.4	127.6	11.8	
	0 00	+	+	+	+	+	
	9.00	250	347	243	259	6.8	
Unknown		6.7	1 8.8	5.8	5.9	L	
	Column	3857	3964	4206	4398	+ 16425	
	Total	23.5	24.1	25.6	26.8	100.0	
Chi-	Square		Val	ue	DF		Significance
Pearson		-	69.82	400	15		.00000
Likelihood	Ratio		68.65	699	15		.00000
Mantel-Haenszel test linear associat		t tor ation	.96	942	1		.32482
Minimum Ex	pected Fr	equency -	260.421	Number	of Missi	ng Observa	ations: 11

Straight Truck Driver Residence by Year

Row Pct /	1993	1994	1995	1996	Bori	
	93 1	94	95	96	Total	
Inside Beltway	29 20.7 12.8	48 34.3 15.0	33 23.6 10.5	30 21.4 8.7	140 11.6	
2 Outside to 3 Miles	15 14.9 6.6	29 28.7 9.1	23 22.8 7.3	34 33.7 9.9	+ 101 8.4	
3 >3 to 10 Miles Out }	37 24.0 16.4	30 19.5 9.4	37 24.0 11.8	50 32.5 14.6	154 12.8	
4 Other MD, VA, DC	113 18.9 50.0	152 25.4 47.5	163 27.3 52.1	170 28.4 49.6	+ 598 49.8 	
5 Outside MD, VA, DC	23 16.5 10.2	38 27.3 11.9	39 28.1 12.5	39 28.1 11.4	+ 139 11.6 	
9 Unknown	9 12.9 4.0	23 32.9 7.2	18 25.7 5.8	20 28.6 5.8	+ 70 5.8	
Column Total	226 18.8	320 26.6	313 26.0	343 28.5	1202 100.0	
Chi-Square		Val	le	DF		Significance
Pearson Likelihood Ratio Mantel-Haenszel test linear associa	for tion	18.41 18.62 1.47	358 469 305	15 15 1		.24130 .23125 .22408

Minimum Expected Frequency - 13.161 Number of Missing Observations: 0

Straight Truck Driver Residence by Year

Count Row Pct Col Pct	YEAR 1993 	1994	1995	1996	Row	
RESTDENCE	1 93	94	95	96	Total	
1 Inside Beltway	6 18.8 1.8	14 43.8 3.3	21.9 1.9	5 15.6 1 1.3	32 2.1	
2 Outside to 3 Miles	3 12.5 .9	4 16.7 1.0	9 37.5 2.5	8 33.3 2.0	24 1.6	
3 >3 to 10 Miles Out	6 15.4 1.8	11 28.2 2.6	12 30.8 3.3	10 25.6 2.5	39 2.6	
4 Other MD, VA, DC	/ 102 } 21.8 29.9	119 25.4 28.3	123 26.3 34.3	124 26.5 31.1	468 30.8 	
5 Outside MD, VA, DC	187 23.2 54.8	221 27.4 52.5	180 22.3 50.1	218 27.0 54.6	806 53.0	
9 Unknown	37 24.5 10.9	52 34.4 12.4	28 18.5 7.8	34 22.5 8.5	151 9.9 	
Column Total	341 22.4	421 27.7	359 23.6	399 26.3	1520 100.0	
Chi-Square		Valı	ae	DF		Significance
Pearson Likelihood Ratio Mantel-Haenszel tes Minimum Expected Fr	19.41 19.25 3.07 5.384	151 519 149 Number of	15 15 1 Missing	Observations	.19569 .20240 .07968 s: 0	

Weather by Year

.

Count		LEAN					
	Row Pct	1993	1994	1995	1996	D	
	COI PCC	93	I 94	95	I 96	Total	
WEATHER	1	+ 1 1697	+ 1807	i 1942	+ 1933	+ 7379	
Clear		23.0 78.1	24.5 79.5	26.3 79.5	26.2 76.9	78.5 	
Dein	2	1 369	321	394	466	1 1550	
Rain		1 17.0	14.1	16.1	18.5	1 10.5	
	3	+ 1 54	101	+ I 75	+ I 80	+ 310	
Snow		17.4 2.5	32.6	24.2 3.1	25.8 3.2	3.3 	
	4	43	1 33	21	+ 29	+ 126	
Fog		34.1 2.0	26.2 1.5	16.7 .9	23.0	1.3 	
	5	1 2	1 1	4	+	+ 1 7	
Other		28.6	14.3	57.1	1	.1 	
	9	8	1 11	1 6	+ 6	+ 31	
Unknown		20.8	29.2	25.0 .2	25.0	1.4	
	Column	2173	2274	2442	2514	+ 9403	
	Total	23.1	24.2	26.0	26.7	100.0	
Chi-	Square	-	Val	ue	DF		Significance
Pearson	Dabia		54.89	035	18		.00001
Mantel-Haenszel test f		t for	5.52	255	18		.01877
line Minimum Ex	ar associ pected Fr	ation equency -	1.618				
0-11				00 00 /0	0 (0) 17		

Cells with Expected Frequency < 5 - 8 OF 28 (28.6%) Number of Missing Observations: 0

		YEAR						
	Count Row Pct Col Pct	 1993 	1994	1995	1996	Row		
		93	94	95	96	Total		
Dry	ER 1	1543 23.1 71.0	1622 24.2 71.3	1779 26.6 72.9	1745 26.1 69.4	6689 71.1		
Wet	2	551 24.8 25.4	471 21.2 20.7	566 25.5 23.2	633 28.5 25.2	2221 23.6		
Snowy	3	44 18.6 2.0	50 21.2 2.2	56 23.7 2.3	86 36.4 3.4	236 2.5		
Icy	4	30 14.2 1.4	118 55.7 5.2	32 15.1 1.3	32 15.1 1.3	212 2.3 		
Other	5		55.6 55.6	2 22.2 1.1	2 22.2 .1	9 .1 		
Unknown	9	5 13.9 1.2	8 22.2 .4	7 19.4 .3	16 44.4 6	1 36 1 .4		
	Column Total	2173 23.1	2274 24.2	2442 26.0	2514 26.7	9403 100.0		
Chi-	Square		Val	ue	DF		Significance	
Pearson Likelihood Mantel-Hae line	Ratio enszel tes ar associ	t for ation	154.13 135.74 .95	576 337 598	15 15 1		.00000 .00000 .32820	
Minimum Ex Cells with	pected Fr Expected	equency - Frequency	2.080 y < 5 - 4	OF 24 (1	6.7%) Nu	umber of	Missing Observations:	0

Weather on Road by Year

.

Month by Year

	Count	YEAR					
	Row Pct	11993	1994	1995	1996		
	Col Pct	 93	94	95	96	Row Total	
MONTH		+ 157	+	+	+- 	+	
Jan	*	20.7	26.4	27.0 8.4	25.9	8.1	
Feb	2	137 20.9 6.3	193 29.4 8.5	141 21.5 5.8	186 28.3 7.4	657 7.0	
March	3	195 24.6 9.0	205 25.9 9.0	177 22.3 7.3	216 27.2 8.6	+ 793 8.4 	
April	4	+ 184 25.1 8.5	179 24.4 7.9	193 26.3 7.9	177 24.1 7.0	+ 733 7.8 	·
Мау	5	178 21.6 8.2	201 24.4 8.8	+ 218 26.5 8.9	227 27.5 9.0	+ 824 8.8 	
June	6	172 21.6 7.9	181 22.7 8.0	205 25.8 8.4	238 29.9 9.5	+ 796 8.5 	2 - -
July	7	171 24.5 7.9	163 23.3 7.2	182 26.0 7.5	183 26.2 7.3	+ 699 7.4 	
Aug	8	211 25.6 9.7	181 21.9 8.0	221 26.8 9.1	212 25.7 8.4	+ 825 8.8 	
Sept	9	183 23.6 8.4	182 23.5 8.0	181 23.3 7.4	+ 230 29.6 9.1	+ 776 8.3 	
Oct	10	+	148 17.7 6.5	242 28.9 9.9	+ 234 27.9 9.3	+ 838 8.9 	
Nov	11	206 24.5 9.5	222 26.4 9.8	222 26.4 9.1	192 22.8 7.6	+ 842 9.0 	
Dec	12	+ 159 19.2 7.3	196 23.6 8.6	254 30.6 10.4	221 26.6 8.8	+ 830 8.8 	- -
Unknown	99	6 20.7 .3	22 75.9 1.0	+ 	1 1 3.4 1 .0	+ 29 .3 	
	Column Total	2173 23.1	2274 24.2	2441 26.0	2514 26.7	+ 9402 100.0	
Chi-	Square		Valu	ue	DF		Significance
Pearson Likelihood Mantel-Hae	Ratio nszel tes	t for	128.58 129.50 6.41	043 455 719	36 36 1		.00000 .00000 .01130

linear association Minimum Expected Frequency - 6.703 Number of Missing Observations: 1

٠

	~ .		YEAR					
	Row	Pct Pct	11993	1994	1995	1996	Pow	
DAY OF WEE		FCL	93	94	l 95	196	Total	
Sunday	K	1	203 22.6 9.3	189 21.0 8.3	274 30.4 11.2	234 26.0 9.3	900 9.6	
Monday		2	281 22.1 12.9	326 25.6 14.3	330 26.0 13.5	334 26.3 13.3	+ 1271 13.5 	
Tuesday		3	281 20.6 12.9	353 25.9 15.5	354 26.0 14.5	375 27.5 14.9	+ 1363 14.5 	
Wednesda	У	4	326 22.6 15.0	340 23.6 15.0	367 25.5 15.0	409 28.4 16.3	+ 1442 15.3 	
Thursday		5	322 22.9 14.8	364 25.8 16.0	343 24.3 14.0	380 27.0 15.1	+ 1409 15.0 	
Friday		6	468 25.8 21.5	430 23.7 18.9	425 23.4 17.4	492 27.1 19.6	+ 1815 19.3 	
Saturday		7	285 24.4 13.1	249 21.3 10.9	348 29.7 14.3	288 24.6 11.5	+ 1170 12.4 	
Unknown		9	7 21.2 .3	23 69.7 1.0	1 3.0 .0	2 6.1 .1	+ 33 .4 	
	Co T	lumn otal	2173 23.1	2274 24.2	2442 26.0	2514 26.7	+ 9403 100.0	
Chi-	Squa	re	_	Val	ue	DF		Significance
Pearson Likelihood Mantel-Hae line	Rat nsze ar a	io l tes ssoci	t for ation	87.45 84.17 5.71	158 494 257	21 21 1		.00000 .00000 .01684

Day of Week by Year

Minimum Expected Frequency - 7.626 Number of Missing Observations: 0

Hour of Day by Year

Count Row Pct	 1993	1994	1995	1996	
COI PCt	l 93	94	95	1 96	Row Total
Mid-12:59am	53 24.8 2.4	44 20.6 1.9	65 29.9 ! 2.6	55 24.8 2.2	+ 214 2.3
1	41 23.0 1.9	38 21.3 1.7	53 29.8 2.2	46 25.8 1.8	+ 178 1.9
2	49 23.2 2.3	54 25.6 2.4	51 24.2 2.1	+ 57 27.0 2.3	211 2.2
3	28 17.1 1.3	37 22.6 1.6	50 30.5 2.0	49 29.9 2.0	+ 164 1.7
4	30 22.7 1.4	38 28.8 1.7	30 22.7 1.2	34 25.8 1.4	+ 132 1.4
5	36 20.9 1.7	41 23.8 1.8	47 27.3 1.9	48 27.9 1.9	+ 172 1.8
6	83 23.4 3.8	88 24.9 3.9	87 24.6 3.6	96 27.1 3.8	+ 354 3.8
7	112 21.8 5.2	105 20.5 4.6	137 26.7 5.6	159 31.0 6.3	+ 513 5.5
8	1 158 24.0 7.3	160 24.4 7.0	168 25.6 6.9	171 26.0 6.8	+ 657 7.0
9	110 22.0 5.1	126 25.3 5.5	123 24.6 5.0	140 28.1 5.6	+ 499 5.3
10	68 17.6 3.1	107 27.6 4.7	116 30.0 4.8	96 24.8 3.8	+ 387 4.1
11	85 22.3 3.9	97 25.4 4.3	96 25.1 3.9	104 27.2 4.1	+ 382 4.1
12 Noon-12:59pm	102 25.1 4.7	87 21.4 3.8	87 21.4 3.6	130 32.0 5.2	+ 406 4.3
13	84 19.8 3.9	106 25.0 4.7	113 26.7 4.6	121 28.5 4.8	+ 424 4.5
14	95 22.1 4.4	117 27.2 5.1	116 27.0 4.8	102 23.7 4.1	430 4.6
15	124 21.8 5.7	132 23.2 5.8	160 28.1 6.6	153 26.9 6.1	- 569 6.1
16	148 24.5 6.8	159 26.3 7.0	141 23.3 5.8	156 25.8 6.2	+ 604 6.4
17	201 24.6 9.3	199 24.3 8.8	201 24.6 8.2	+ 217 26.5 8.6	+ 818 8.7

					1	- 1		
	18	152 22.9 7.0	169 25.4 7.4	167 25.1 6.8	177 26.6 7.0	665 7.1		
	19	119 27.0 5.5	105 23.8 4.6	104 23.6 4.3	113 25.6 4.5	441 4.7		
	20	58 25.7 2.7	47 20.8 2.1	64 28.3 2.6	57 25.2 2.3	226 2.4		
	21	69 23.0 3.2	65 21.7 2.9	92 30.7 3.8	74 24.7 2.9	300 3.2 		
	22	82 26.6 3.8	64 20.8 2.8	86 27.9 3.5	1 76 1 24.7 1 3.0	308 3.3		
	23	73 24.6 3.4	62 20.9 2.7	84 28.3 3.4	78 26.3 3.1	297 3.2		
Unknown	99	12 26.7 .6	27 60.0 1.2	6.7 .1	3 6.7 .1	45 .5 		
	Column Total	2172 23.1	2274 24.2	2441 26.0	2512 26.7	9399 100.0		
Chi-S	Square	_	Valu	1e	DF		Significance	
Pearson Likelihood Mantel-Haer linea	Ratio Iszel test ar associa	t for ation	111.279 111.150 16.180	928 003 505	75 75 1		.00416 .00426 .00006	
Cells with	Expected Fre	equency - Frequency	.693 7 < 5 - 4	OF 104 (3.8%) 1	Number of	Missing Observations:	4

Appendix B: General Crosstabs Maryland

Crash Type Categories by Year

•

١

Count Row Pct	 1993	1994	1995	1996		
Col Pct	 93	94	1 95	1 96 1	Row Total	
Crash Type 1 Stop/Slowing	433 23.5 32.7	386 20.9 29.7	501 27.2 30.4	523 28.4 31.9	1843 31.2	
3 Sideswipe/Cutoff	203 19.8 15.3	237 23.1 18.2	283 27.6 17.2	301 29.4 18.4	1024 17.3	
4 Ran Off Road	358 22.2 27.1	355 22.0 27.3	467 28.9 28.3	434	1614 27.3	
5 Other	329 23.0 24.9	323 22.6 24.8	398 27.8 24.1	382 26.7 23.3	1432 24.2	
Column Total	1323 22.4	1301 22.0	1649 27.9	1640 27.7	5913 100.0	
Chi-Square		Valı	e	DF		Significance
Pearson Likelihood Ratio Mantel-Haenszel tes linear assoc:	st for lation	9.280 9.370 .255	594 585 517	9 9 1		.41122 .40324 .61346
Minimum Expected Fi	requency -	225.304	Number	of Missir	ng Observa	ations: 0

Injury Severity by Year

	Count Row Pct	1993	1994	1995	1996	Pour	
	COI FCC	93	94	95	96	Total	
SEVERITY	1	+	1 10	+	-+ I 8	+ 42	
Fatal	*	28.6	23.8	28.6	19.0	.7	
Injury	2	643 24.6 48.6	579 22.1 44.5	691 26.4 41.9	1 706 1 27.0 1 43.0	+ 2619 44.3	
Property	3 Damage	598 20.9 45.2	580 20.3 44.6	851 29.7 51.6	835 29.2 50.9	+ 2864 48.4 	
Unknown	9	70 1 18.0 1 5.3	132 34.0 10.1	95 24.5 5.8	91 23.5 5.5	- 1388 16.6 1	
	Column Total	1323 22.4	1301 22.0	1649 27.9	1640 27.7	5913 100.0	
Chi-	Square		Valu	ue	DF		Significance
Pearson Likelihood Mantel-Haer linea	Ratio nszel tes ar associ	- t for ation	55.44 52.24 .02	738 118 188	9 9 1		.00000 .00000 .88241

Minimum Expected Frequency - 9.241 Number of Missing Observations: 0

Count Row Pct	 1993	1994	1995	1996		
Col Pct	 93	94	95	96 1	Row Total	
No Alcohol/Drugs	1197 21.9 90.5	1216 22.3 93.5	1517 27.8 92.0	1530 28.0 93.3	5460 92.3	
2 Alcohol	119 28.1 9.0	$78 \\ 18.4 \\ 6.0$	123 29.0 7.5	104 24.5 6.3	424 7.2	
3 Drugs	7 25.0 .5	7 25.0 .5	9 32.1 .5	5 17.9 .3	28 •5	
4 Alcohol and Drugs				1 100.0 .1	1 .0	ţ
Column Total	1323 22.4	1301 22.0	1649 27.9	1640 27.7	5913 100.0	
Chi-Square	_	Valu	1e	DF		Significance
Pearson Likelihood Ratio Mantel-Haenszel tes	t for	15.240 15.07 4.404)57 777 463	9 9 1		.08454 .08882 .03584

Any Alcohol in Crash by Year

linear association Minimum Expected Frequency - .220 Cells with Expected Frequency < 5 - 4 OF 16 (25.0%) Number of Missing Observations: 0

Weather by Year

	Count	YEAR	190/	1005	1006			
	Col Pct	1 03	1994	1995	1990	Row		
WEATHER		+	1 94 +	90 	1 90 +-~	TOLAL		
Clear	1	998 22.1 75.4	995 22.1 76.5	1268 28.1 76.9	1251 27.7 76.3	4512 76.3		
Rain	2	278 24.5 21.0	226 19.9 17.4	310 27.4 18.8	319 28.2 19.5	1133 19.2 		
Snow	3	27 13.7 2.0	64 32.5 4.9	50 25.4 3.0	56 28.4 3.4	-+ 197 3.3 		
Fog	4	13 31.0 1.0	8 19.0 .6	12 28.6 .7	9 21.4 5	-+ 42 .7 		
Other	5	2 28.6 .2	1 14.3 1 .1	4 57.1 .2	+ 	-+ 7 .1		
Unknown	9	1 5 22.7 .4	7 31.8 .5	5 22.7 .3	1 5 1 22.7 1 .3	22 .4		
	Column Total	1323 22.4	1301 22.0	1649 27.9	1640 27.7	5913 100.0		
Chi-S	Square		Valu	1e	DF		Significance	
Pearson Likelihood Mantel-Haen linea	Ratio nszel tes ar associ	- t for ation	29.80 30.894 .712	716 410 257	15 15 1		.01264 .00908 .39859	
Minimum Exp Cells with	pected Fr Expected	equency - Frequency	1.540 y < 5 - 6	OF 24 (2	5.0%)	Number of	Missing Observations:	0

Weather on Road by Year $_{_{\rm YEAR}}$

ς.

.

	Count Row Pct Col Pct	 1993 	1994	1995	1996	Row		
WEATHER ON	ROAD	+	+	, 95 ,	+	+		
Dry	1	885 22.1 66.9	886 22.1 68.1	1132 28.2 68.6	1109 27.6 67.6	4012 67.9 		
Wet	2	403 25.1 30.5	322 20.0 24.8	451 28.1 27.3	431 26.8 26.3	+ 1607 27.2 		
Snowy	3	18 11.9 1.4	33 21.9 2.5	42 27.8 2.5	58 38.4 3.5	151 2.6 		
Icy	4	13 11.8 1.0	54 49.1 4.2	17 15.5 1.0	26 23.6 1.6	110 1.9		
Other	5	+ 	2 40.0 .2	1 20.0 .1	2 40.0 1	5 .1		
Unknown	9	4 14.3 .3	4 14.3 .3	6 21.4 .4	14 50.0 .9	1 28 1 .5		
	Column Total	1323 22.4	1301 22.0	1649 27.9	1640 27.7	5913 100.0		
Chi-	Square		Valu	le	DF		Significance	
Pearson Likelihood Mantel-Hae line Minimum Ex	Ratio nszel tes ar associa pected Fra	- t for ation equency -	80.670 74.439 2.153 1.100	581 961 368	15 15 1		.00000 .00000 .14223	
Cells with	Expected	Frequency	7 < 5 - 4	OF 24 (1)	5.7%) N	lumber of	Missing Observations:	0

B-3

. .

Month by Year

	Gauss	YEAR					
	Row Pct	1993	1994	1995	1996	Patr	
MONTH	COI FCC	93	1 94	95	1 96	Total	
Jan	1	93 1 19.3 1 7.0	110 22.9 8.5	143 29.7 8.7	135 28.1 8.2	+ 481 8.1 	
Feb	2	80 19.1 6.0	127 30.3 9.8	93 22.2 5.6	119 28.4 7.3	+ 419 7.1 !	
March	3	1 122 1 24.4 1 9.2	120 24.0 9.2	115 23.0 7.0	142 28.5 8.7	+ 499 8.4 	
April	4	117 23.9 8.8	115 23.5 8.8	133 27.1 8.1	125 25.5 7.6	+ 490 8.3 	
May	5	106 19.7 8.0	126 23.4 9.7	153 28.4 9.3	154 28.6 9.4	+ 539 9.1 	:
June	6	95 20.8 7.2	92 20.1 7.1	120 26.3 7.3	150 32.8 9.1	+ 457 7.7 	
July	7	90 22.2 6.8	73 18.0 5.6	126 31.1 7.6	116 28.6 7.1	+ 405 6.8 	
Aug	8	131 24.8 9.9	95 18.0 7.3	156 29.5 9.5	146 27.7 8.9	+ 528 8.9 	:
Sept	9	119 24.4 9.0	108 22.1 8.3	124 25.4 7.5	137 28.1 8.4	+ 488 8.3 	
Oct	10	136 25.7 10.3	76 14.3 5.8	169 31.9 10.2	149 28.1 9.1	+ 530 9.0 	
Nov	11	143 26.2 10.8	124 22.7 9.5	159 29.1 9.6	120 22.0 7.3	+ 546 9.2	-
Dec	12	85 16.9 6.4	113 22.5 8.7	158 31.5 9.6	146 29.1 8.9	+ 502 8.5 	
Unknown	99	6 20.7 1.5	22 75.9 1.7		1 3.4 .1	+ 29 .5 	
	Column Total	1323 22.4	1301 22.0	1649 27.9	1640 27.7	+ 5913 100.0	
Chi-s	Square	_	Valu	1e	DF		Significance
Pearson Likelihood Mantel-Haer	Ratio szel test	for	143.798 142.794 10.760	322 109 001	36 36 1		.00000 .00000 .00104

linear association Minimum Expected Frequency - 6.381 Number of Missing Observations: 0

Day of Week by Year

ì

	Count	YEAR 1					
	Row Pct	1993	1994	1995	1996	Dava	
0.14 OF 1995		93	94	95	96	Total	
Sunday	1	126 20.0 9.5	120 19.1 9.2	208 33.1 12.6	175 27.8 10.7	+ 629 10.6 	
Monday	2	170 22.4 12.8	168 22.1 12.9	219 28.8 13.3	203 26.7 12.4	760 1 12.9	
Tuesday	3	163 19.8 12.3	194 23.6 14.9	228 27.7 13.8	238 28.9 14.5	+ 823 13.9 	
Wednesday	4	185 20.4 14.0	197 21.7 15.1	255 28.1 15.5	272 29.9 16.6	+ 909 15.4 	
Thursday	5	i 201 i 22.6 i 15.2	215 24.1 16.5	226 25.4 13.7	249 27.9 15.2	+ 891 15.1 	
Friđay	6	294 26.4 22.2	232 20.8 17.8	282 25.3 17.1	307 27.5 18.7	+ 1115 18.9 	
Saturday	7	178 23.5 13.5	152 20.1 11.7	231 30.6 14.0	195 25.8 11.9	+ 756 12.8 	
Unknown	9	1 6 1 20.0 1 .5	23 76.7 1.8	 	1 3.3 .1	+ 30 .5	
	Column Total	1323 22.4	1301 22.0	1649 27.9	1640 27.7	5913 100.0	
Chi-S	Square	-	Valu	le	DF		Significance
Pearson Likelihood Mantel-Haen linea	Ratio szel tes ir associ	t for ation	93.180 88.984 9.445	594 457 531	21 21 1		.00000 .00000 .00212

Minimum Expected Frequency - 6.601 Number of Missing Observations: 0

-

B-5

Hour of Day by Year

	Count Row Pct	1993	1994	1995	1996	Row
HOUD		93	94	95	96	Total
Mid-12:59	0 am	32 21.2 2.4	31 20.5 2.4	48 31.1 2.9	43 27.2 2.6	151 2.6
	1	28 20.4 2.1	29 21.2 2.2	42 30.7 2.5	38 27.7 2.3	137 2.3
	2	32 21.9 2.4	37 25.3 2.8	35 24.0 2.1	42 28.8 2.6	146 2.5
	3	23 17.4 1.7	29 22.0 2.2	40 30.3 2.4	40 30.3 2.4	132 2.2
	4	25 26.6 1.9	22 23.4 1.7	22 23.4 1.3	25 26.6 1.5	+ 94 1.6
	5	30 23.3 2.3	27 20.9 2.1	40 31.0 2.4	32 24.8 2.0	+ 129 2.2
	6	56 23.2 4.2	58 24.1 4.5	63 26.1 3.8	64 26.6 3.9	+ 241 4.1
	7	64 20.8 4.8	62 20.1 4.8	87 28.2 5.3	95 30.8 5.8	+ 308 5.2
	8	86 23.1 6.5	89 23.9 6.8	108 29.0 6.5	90 24.1 5.5	373 6.3
	9	61 20.3 4.6	68 22.7 5.2	90 30.0 5.5	81 27.0 4.9	300 5.1
	10	47 18.4 3.6	1 55 1 21.5 1 4.2	84 32.8 5.1	70 27.3 4.3	+ 256 4.3
	11	48 19.4 3.6	52 21.1 4.0	70 28.3 4.2	77 31.2 4.7	247
Noon-12:5	12 9pm	71 27.0 5.4	50 9.0 3.8	52 19.8 3.2	90 34.2 5.5	263 263 4.4
	13	42 1 16.5 1 3.2	60 23.5 4.6	73 28.6 4.4	80 31.4 4.9	255 4.3
	14	58 23.8 4.4	57 23.4 4.4	71 29.1 4.3	58 23.8 3.5	244 4.1
	15	77 20.8 5.8	85 23.0 6.5	109 29.5 6.6	99 26.8 6.0	370 6.3
	16	73 21.4 5.5	85 24.9 6.5	87 25.5 5.3	96 28.2 5.9	- 341 5.8
	17	1 108 1 23.5 1 8.2	102 22.2 7.8	120 26.1 7.3	130 28.3 7.9	460 7.8

	18	81 21.6 6.1	76 20.3 5.8	106 28.3 6.4	112 29.9 6.8	+ 375 6.3 	
	19	68 24.8 5.1	58 21.2 4.5	75 27.4 4.5	73	+ 274 4.6	
	20	41 27.0 3.1	25 16.4 1.9	48 31.6 2.9	38 25.0 2.3	+ 152 2.6 	
	21	48 24.2 3.6	36 18.2 2.8	61 30.8 3.7	53 26.8 3.2	198 3.3	
	22	60 28.3 4.5	42 19.8 3.2	57 26.9 3.5	53 25.0 3.2	+ 212 3.6 	
	23	52 25.1 3.9	39 18.8 3.0	58 28.0 3.5	58 28.0 3.5	+ 207 3.5 	
Unknown	99	12 26.7 .9	27 60.0 2.1	3 6.7 .2	3 6.7 .2	+ 45 .8 	
	Column Total	1323 22.4	1301 22.0	1649 27.9	1640 27.7	+ 5913 100.0	
Chi-S	Square		Val	e	DF		Significance
Pearson Likelihood Mantel-Haer linea	Ratio nszel tesi ar associa	- t for ation	108.40 106.91 15.04	152 947 503	75 75 1		.00703 .00913 .00011
Mat 1 1 1 1 1 1			660				

Minimum Expected Frequency - .660 Cells with Expected Frequency < 5 - 4 OF 104 (3.8%) Number of Missing Observations: 0

Appendix C: General Crosstabs Virginia

Count Row Pct Col Pct	 1993 	1994	1995	1996	Row	
	93	94	95	1 96	Total	
CRASH TYPE 1 Stop/Slowing	371 24.1 43.6	421 27.4 43.3	342 22.2 43.1	404 26.3 46.2	1538 44.1	
3 Sideswipe/Cutoff	159 24.5 18.7	210 32.4 21.6	139 21.5 17.5	140 21.6 16.0	648 18.6	
4 Ran Off Road	155 23.2 18.2	173 25.9 17.8	164 24.6 20.7	1 176 26.3 20.1	668 19.1	
5 Other	165 25.9 19.4	169 26.6 17.4	148 23.3 18.7	154 24.2 17.6	636 18.2	
Column Total	850 24.4	973 27.9	793 22.7	874 25.0	3490 100.0	
Chi-Square		Val	ue	DF		Significance
Pearson Likelihood Ratio Mantel-Haenszel tes linear associ	- t for ation	13.59 13.49 .37	877 630 449	9 9 1		.13733 .14141 .54057

Major Crash Type Categories by Year $_{_{\underline{\mathrm{YEAR}}}}$

Minimum Expected Frequency - 144.512 Number of Missing Observations: 0

Injury Severity by Year $_{\rm YEAR}$

	Count Row Pct Col Pct	 1993 	1994	1995	1996	Row	
C DU LED T ON		93	94	I 95	96	Total	
Fatal	1	5 38.5 .6	5 38.5 5	2 15.4 .3	1 1 1 7.7 1 .1	+ 13 .4 	
Injury	2	289 22.4 34.0	353 27.3 36.3	316 24.5 39.8	333 25.8 38.1	+ 1291 37.0 	
Property	3 Damage	556 25.5 65.4	613 28.1 63.0	475 21.7 59.9	540 24.7 61.8	+ 2184 62.6 	
Unknown	9	 	2 100.0 .2		 	+ 2 .1 	
	Column Total	850 24.4	973 27.9	793 22.7	874 25.0	3490 100.0	
Chi-	Square		Valu	le	DF		Significance
Pearson Likelihood Mantel-Haen	Ratio nszel tes	t for	14.974 15.33 3.003	491 125 135	9 9 1		.09163 .08223 .08320

linear association Minimum Expected Frequency - .454 Cells with Expected Frequency < 5 - 8 OF 16 (50.0%) Number of Missing Observations: 0

General Crosstabs Virginia

Any Alcohol in Crash by Year

Count Row Pc Col Pc	t 1993	1994	1995	1996	Row	
ANY ALCOHOL	93	94	95	96	Total	
No Alcohol/Drug	801 s 24.4 94.2	923 28.1 94.9	743 22.7 93.7	813 24.8 93.0	+ 3280 94.0 	
2 Alcohol	49 23.3 5.8	50 23.8 5.1	50 23.8 6.3	61 29.0 7.0	210 6.0 	
Colum Tota	n 850 1 24.4	973 27.9	793 22.7	874 25.0	3490 100.0	
Chi-Square		Val	lue	DF		Significance
Pearson Likelihood Ratio Mantel-Haenszel t linear asso	est for ciation	2.97 2.96 1.84	7072 5955 1787	3 3 1		.39616 .39634 .17403

Minimum Expected Frequency - 47.716 Number of Missing Observations: 0

Weather by Year

	Count Row Pct	11993	1994	1995	1996	_	
	Col Pct	I I 93	94	1 95	I 96	Row Total	
WEATHER Clear	1	699 24.4 82.2	812 28.3 83.5	+ 674 23.5 85.0	682 23.8 78.0	+ 2867 82.1 	
Rain	2	+ 91 21.8 10.7	+ 95 22.8 9.8	84 20.1 10.6	+ 147 35.3 16.8	+ 417 11.9 	٤.
Snow	3	27 23.9 3.2	37 32.7 3.8	25 22.1 3.2	24 21.2 2.7	+ 113 3.2 	
Fog	4	30 35.7 3.5	25 29.8 2.6	9 10.7 1.1	20 23.8 2.3	+ 84 2.4 	
Unknown	9	3 42.9 .4	4 57.1 .4	1 50.0 .1	1 50.0 .1	+ 9 .3	
	Column Total	850 24.4	973 27.9	793 22.7	874 25.0	+ 3490 100.0	
Chi-	Square		Val	ue	DF		Significance
Pearson Likelihood Mantel-Hae	Ratio nszel tes	- t for ation	46.59 49.14 4.37	824 628 174	15 15 1		.00004 .00002 .03654

linear association Minimum Expected Frequency - .454 Cells with Expected Frequency < 5 - 8 OF 24 (33.3%) Number of Missing Observations: 0

Weather on Road by Year

		YEAR			,			
	Count Row Pct	11993	1994	1995	1996	Bow		
	001 100	93	1 94	95	96	Total		
WEATHER ON	ROAD	+	+	+	+	+		
Dry	Ţ	24.6	1 75.6	24.2 81.6	23.8	1 76.7		
Wet	2	148 24.1 17.4	149 24.3 15.3	115 18.7 14.5	202 32.9 23.1	- 614 17.6		
Snowy	3	26 30.6 3.1	17 20.0 1.7	14 16.5 1.8	28 32.9 3.2	+ 85 2.4 		
Icy	4	17 16.7 2.0	64 62.7 6.6	15 14.7 1.9	6 5.9 .7	1 102 2.9 		
Other	5	1 	1 3 1 75.0 1 .3	1 1 1 25.0 1 .1	+ 	4 .1		
Unknown	9	1 12.5 .1	1 4 1 50.0 1 .4	1 12.5 .1	2 25.0 .2	+ 8 .2		
	Column Total	850 24.4	973 27.9	793 22.7	874 25.0	+ 3490 100.0		
Chi-	Square		Val	ue	DF		Significance	
Pearson Likelihood Mantel-Hae line	Ratio nszel tes ar associ	t for ation	105.77 101.43 .68	849 745 967	15 15 1		.00000 .00000 .40628	
Cells with	Expected Fr	equency - Frequenc	.909 Sy < 5 - 8	OF 24 (3	3.3%) N	umber of 1	Missing Observations:	0

Month by Year

		YEAR					
	Count Row Pct	 1993	1994	1995	1996	Rev	
	Col Pct	l I 93	i 94	95	1 96	Total	
MONTH Jan	1	+ 64 22.9 7.5	+91 32.6 9.4	62 22.2 7.8	1 62 22.2 1 7.1	+ 279 8.0 	
Feb	2	+ 57 23.9 6.7	+ 66 27.7 6.8	+ ! 48 ; 20.2 6.1	67 1 28.2 7.7	• 238 ! 6.8 	
March	3	+	+ 85 28.9 8.7	 62 21.1 7.8	: 74 25.2 8.5	+ 294 8.4 	
April	4	+ 67 27.6 7.9	+ ! 64 ! 26.3 ! 6.6	60 24.7 7.6	52 21.4 5.9	+ 1 243 1 7.0	
May	5	+ 72 25.3 8.5	1 75 1 26.3 1 7.7	65 22.8 8.2	+ 73 25.6 8.4	+ 285 8.2	
June	6	+ 77 22.7 9.1	89 26.3 9.1	+ 85 25.1 10.7	88 26.0 10.1	+ 339 1 9 7	
July	7	+ 81 27.6 9.5	+ 90 30.6 9.2	56 19.0 7.1	67 , 22.8 7.7	+ 294 8.4 	
Aug	8	80 26.9 9.4	-+ 86 29.0 8.8	+ 65 21.9 8.2	66 22.2 7.6	297 8.5 	
Sept	9	+	-+ 74 25.7 7.6	57 19.8 7.2	93 32.3 10.6	-+ 288 : 8.3 	
Oct	10	+ 78 25.3 9.2	72 23.4 7.4	1 73 1 23.7 3 9.2	85 27.6 9.7	-+ 308 8.8 	
Nov	11	+ 1 63 1 21.3 1 7.4	98 33.1 10.1	63 21.3 8.0	72 24.3 8.2	1 296 8.5 	
Dec	12	+ 74 22.6 8.7	i 83 25.3 8.5	96 29.3 12.1	i 75 i 22.9 i 8.6	-+ 328 9.4	
	Columr Total	+ 850 24.4	973 27.9	-+792 22.7	874 25.1	-+ 3489 100.0	
Cł	ni-Square		Va	ìue 	DF		Significance
Pearson Likeliho Mantel-H	od Ratio Taenszel te	est for	40.6 39.7 1.3	5087 2931 2482	33 33 1		.16898 .19523 .24973

linear association Minimum Expected Frequency 54.026 Number of Missing Observations: 1

Day of Week by Year

	0	YEAR					
	Row Pet Col Pet	 1993 	1994	1995	1996	Deri	
DAY OF WEE	K	93 +	94	l 95	1 96	l Total	
Sunday	1	77 28.4 9.1	69 25.5 7.1	66 24.4 8.3	59 21.8 6.8	-+ 271 7.8 	
Monday	2	111 21.7 13.1	158 30.9 16.2	111 21.7 14.0	+ 131 25.6 15.0	-+ / 511 / 14.6 /	
Tuesday	3	118 21.9 13.9	159 29.4 16.3	+ 126 23.3 15.9	+ 137 25.4 15.7	+ 540 15.5 	
Wednesday	4	141 26.5 16.6	143 26.8 14.7	112 21.0 14.1	+ 137 25.7 15.7	+ 533 15.3 	
Thursday	5	121 23.4 14.2	149 28.8 15.3	117 22.6 14.8	+ 131 25.3 15.0	+ 518 14.8 	
Friday	6	174 24.9 20.5	198 28.3 20.3	143 20.4 18.0	185 26.4 21.2	+ i 700 20.1 	
Saturday	7 	107 25.8 12.6	97 23.4 10.0	117 28.3 14.8	93 22.5 10.6	+ 414 11.9	
Unknown	9 	1 33.3 .1		1 33.3 .1	1 33.3 .1	+ 3 .1	
	Column Total	850 24.4	973 27.9	793 22.7	874 25.0	3490 100.0	
Chi-Sq	uare		Valu	e	DF		Significance
Pearson Likelihood R Mantel-Haens linear	atio zel test associat	for ion	25.068 25.716 .025	71 90 36	21 21 1		.24420 .21745 .87347
Cells with E	cted Freq xpected F	quency - Trequency	.682 < 5 - 4 (OF 32 (12.	5%) Nur	mber of M	issing Observations:

Hour of Day by Year

	0					
]	Count Row Pct Col Pct	 1993 	1994	1995	1996	Row
		93	94	95	96	Total
Mid-12:59	0 am	21 33.3 2.5	13 20.6 1.3	17 27.0 2.1	12 19.0 1.4	63 1.8
	1	13 31.7 1.5	1 9 22.0 .9	11 26.8 1.4	8 19.5 .9	41 1.2
	2	17 26.2 2.0	17 26.2 1.7	1 16 24.6 2.0	15 23.1 1.7	65 1.9
	3	5 1 15.6 1 .6	8 25.0 .8	10 31.3 1.3	9 28.1 1.0	32 .9
	4	5 13.2 .6	16 42.1 1.6	8 21.1 1.0	9 23.7 1.0	38 1.1
	5	6 14.0 .7	1 14 32.6 1 1.4	1 7 1 16.3 1 .9	16 37.2 1.8	43
	6	27 23.9 3.2	30 26.5 3.1	24 21.2 3.0	32 28.3 3.7	113 3.2
	7	48 23.4 5.7) 43 21.0 4.4	50 24.4 6.3	64 31.2 7.3	+ 205 5.9
	8	72 25.4 8.5	71 25.0 7.3	60 21.1 7.6	81 28.5 9.3	284 8.1
	9	49 24.6 5.8	58 29.1 6.0	33 16.6 4.2	59 29.6 6.8	199 5.7
	10	21 16.0 2.5	52 39.7 5.3	32 24.4 4.0	26 19.8 3.0	131 3.8
	11	37 27.4 4.4	45 33.3 4.6	26 19.3 3.3	27 20.0 3.1	135 3.9
Noon-12:5	12 9pm	31 21.7 3.7	37 25.9 3.8	35 24.5 4.4	40 28.0 4.6	143 4.1
	13	42 24.9 4.9	46 27.2 4.7	40 23.7 5.1	41 24.3 4.7	+ 169 4.8
	14	37 19.9 4.4	60 32.3 6.2	45 24.2 5.7	44 23.7 5.0	+ 186 5.3
	15	47 23.6 5.5	47 23.6 4.8	51 25.6 6.4	54 27.1 6.2	199 5.7
	16	75 28.5 8.8	74 28.1 7.6	54 20.5 6.8	60 22.8 6.9	263 7.5

17	93 26.0 11.0	97 27.1 10.0	81 22.6 10.2	87 24.3 10.0	358 10.3	
18	71 24.5 8.4	93 32.1 9.6	61 21.0 7.7	65 22.4 7.5	290 8.3 	
19	51 30.5 6.0	47 28.1 4.8	29 17.4 3.7	40 24.0 4.6	1 167 4.8	
20	17 23.0 2.0	22 29.7 2.3	16 21.6 2.0	19 25.7 2.2	-+ 74 2.1	
21	21 20.6 2.5	29 28.4 3.0	31 30.4 3.9	21 20.6 2.4	102 2.9 	
22	22 22.9 2.6	22 22.9 2.3	29 30.2 3.7	23 24.0 2.6	96 2.8 	
23	21 23.3 2.5	23 25.6 2.4	26 28.9 3.3	20 22.2 2.3	90 2.6	
Column Total	849 24.4	973 27.9	792 22.7	872 25.0	3486 100.0	
Chi-Square		Valu	le	DF		Significance
Pearson Likelihood Ratio Mantel-Haenszel tes	t for	79.079 78.873 1.688	983 317 350	69 69 1		.19061 .19501 .19380
Minimum Expected Fre	acion equency -	7.270 1	Number of	Missing	Observation	.s: 4

DOT HS 808 852 February 1999 •

.

.

١

r